| |||
CNT Composites (cnt + composite)
Selected AbstractsPoly(3,4-ethylenedioxythiophene) (PEDOT)-Coated MWCNTs Tethered to Conducting Substrates: Facile Electrochemistry and Enhanced Coloring EfficiencyMACROMOLECULAR RAPID COMMUNICATIONS, Issue 24 2008Shweta Bhandari Abstract Composite films of poly(3,4-ethylenedioxythiophene) (PEDOT)-coated over functionalized multiwalled coiled and linear carbon nanotubes (CNTs) have been fabricated by a simple oxidative electropolymerization route. The nanotubular morphology of the polymer,CNT composite is responsible for the lower charge transfer impedance, lower internal resistance, and superior capacitive response in comparison to that shown by the control PEDOT film doped by trifluoromethanesulfonate ions. This facile electrochemistry exhibited by the PEDOT,CNT composite film ensues in a remarkably high coloration efficiency of 367 cm2,·,C,1 at 550 nm, hitherto unrealized for PEDOT; thus demonstrating the huge potential the PEDOT,CNT composite film has as cathode for the entire spectrum of electrochromic devices. [source] Synthesis of Carbon-Nanotube Composites Using Supercritical Fluids and Their Potential ApplicationsADVANCED MATERIALS, Issue 7 2009Zhimin Liu Abstract Carbon-nanotube (CNT) composites have attracted a lot of attention because of their potential applications in many fields. Here, recent advances in the synthesis of CNT composites using supercritical fluids (SCFs) are highlighted. SCFs exhibit unique features for the synthesis of composites because of their unusual properties, such as low viscosity, high diffusivity, near-zero surface tension, and tunability. Preliminary studies show that SCFs show unusual advantages for the synthesis of CNT composites. The morphologies and structures of the resultant CNT composites can be tuned by changing the solvent properties. The SCF methods not only provide a green route for the synthesis of composites, but also result in nanostructures that have not yet been produced by conventional methods. Moreover, the potential applications of the resultant CNT composites are also discussed. [source] Noble Metal Decoration and Alignment of Carbon Nanotubes in Carboxymethyl CelluloseMACROMOLECULAR RAPID COMMUNICATIONS, Issue 2 2008Mallikarjuna N. Nadagouda Abstract A facile microwave method (MW) is described that accomplishes alignment and decoration of noble metals on carbon nanotubes (CNT) wrapped with carboxymethyl cellulose (CMC). Carbon nanotubes such as single- and multi-walled, and Buckminsterfullerene (C-60) are well dispersed using the sodium salt of CMC under sonication. Addition of respective noble metal salts then generates noble metal-decorated CNT composites at room temperature. However, aligned nanocomposites of CNTs could only be generated by exposing the above nanocomposites to MW irradiation. The CNT composites are characterized using scanning electron microscopy, energy dispersive X-ray analysis, X-ray mapping, transmission electron microscopy, and UV-visible spectroscopy. The general preparative procedure is versatile and provides a simple route to manufacturing useful metal-coated CNT nanocomposites. [source] |