c-Jun-N-terminal Kinase (c-jun-n-terminal + kinase)

Distribution by Scientific Domains


Selected Abstracts


Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes

HEPATOLOGY, Issue 6 2003
Katsuhiko Matsumaru
We previously reported that depletion of glutathione in murine hepatocytes by diethylmaleate (DEM) or acetaminophen (APAP) leads to oxidative stress,dependent necrosis and sensitizes to tumor necrosis factor (TNF)-induced apoptosis in an oxidative stress,independent fashion, which could not be explained by interference with nuclear factor ,B (NF-,B) nuclear translocation. The present report explores the mechanisms of these effects. We observed that DEM led to necrosis when both mitochondrial and cytosol glutathione were depleted profoundly but sensitized to TNF-induced apoptosis when cytosol glutathione was depleted selectively. DEM and APAP lead to a significant decrease in reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio. Glutathione depletion by DEM or APAP was associated with inhibition of TNF-induced NF-,B transactivation of anti-apoptotic genes, including inducible nitric oxide synthase (i-NOS). Provision of exogenous NO partially abrogated the sensitization to TNF in response to glutathione depletion. Glutathione depletion alone led to sustained increase in phospho-jun levels and c-Jun-N-terminal kinase (JNK) activity. JNK inhibitor partially blocked the sensitization to TNF-induced apoptosis accompanying glutathione depletion. In conclusion, these findings suggest that extramitochondrial glutathione depletion alters the thiol-disulfide redox state, leading to inhibition of NF-,B transactivation of survival genes and to sustained activation of JNK, both of which contribute to the sensitization to TNF-induced apoptosis. [source]


Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Jaya Dasgupta
The lifetime exposure of organisms to oxidative stress influences many aging processes which involve the turnover of the extracellular matrix. In this study, we identify the redox-responsive molecular signals that drive senescence-associated (SA) matrix metalloproteinase-1 (MMP-1) expression. Precise biochemical monitoring revealed that senescent fibroblasts increase steady-state (H2O2) 3.5-fold (13.7,48.6,pM) relative to young cells. Restricting H2O2 production through low O2 exposure or by antioxidant treatments prevented SA increases in MMP-1 expression. The H2O2 -dependent control of SA MMP-1 is attributed to sustained JNK activation and c-jun recruitment to the MMP-1 promoter. SA JNK activation corresponds to increases and decreases in the levels of its activating kinase (MKK-4) and inhibitory phosphatase (MKP-1), respectively. Enforced MKP-1 expression negates SA increases in JNK phosphorylation and MMP-1 production. Overall, these studies define redox-sensitive signaling networks regulating SA MMP-1 expression and link the free radical theory of aging to initiation of aberrant matrix turnover. J. Cell. Physiol. 225: 52,62, 2010. © 2010 Wiley-Liss, Inc. [source]


Analysis of gene expression in human bronchial epithelial cells upon influenza virus infection and regulation by p38 mitogen-activated protein kinase and c-Jun-N-terminal kinase

RESPIROLOGY, Issue 2 2008
Shinichi HAYASHI
Background and objective: Airway epithelial cells, which are the initial site of influenza virus (IV) infection, participate in the inflammatory process through the expression of various genes. In this process, mitogen-activated protein kinase (MAPK) may be associated with the expression of many genes, but its precise role remains unknown. Methods: A comprehensive analysis was performed of gene expression in human bronchial epithelial cells upon IV infection, using an Affymetrix gene chip containing 12 000 genes. Regulation of gene expression by MAPK was also analysed. Results: A total of 5998 genes were detected. Upon IV infection, 165 genes were upregulated and 49 of these were interferon-stimulated genes. The functions of 129 genes, including 14 apoptosis-related genes and 6 antiviral genes, were well characterized; however, those of 36 genes were unknown. The expression of 29 genes was inhibited either by SB 203580, a specific inhibitor of p38 MAPK, or by CEP-11004, a specific inhibitor of the c-Jun-N-terminal kinase (JNK) cascade, and the percentage inhibition by SB 203580 correlated with that by CEP-11004, suggesting that p38 and JNK participate in a common downstream pathway involved in the regulation of gene expression. p38 MAPK- or JNK-dependent genes were functionally classified into diverse categories. Conclusions: Although further studies are needed to obtain a more complete understanding of gene expression and the role of MAPK in gene expression, the present results are important in understanding the molecular mechanisms involved in the response of bronchial epithelial cells to IV infection. [source]


Melatonin inhibits MPP+ -induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Jirapa Chetsawang
Abstract:, Neurodegenerative diseases such as Parkinson's disease are illnesses associated with high morbidity and mortality with few, or no effective, options available for their treatment. In addition, the direct cause of selective dopaminergic cell loss in Parkinson's disease has not been clearly understood. Taken together, several studies have demonstrated that melatonin has a neuroprotective effect both in vivo and in vitro. Accordingly, the effects of melatonin on 1-methyl, 4-phenyl, pyridinium ion (MPP+)-treated cultured human neuroblastoma SK-N-SH cell lines were investigated in the present study. The results showed that MPP+ significantly decreased cell viability. By contrast, an induction of phosphorylation of c-Jun, activation of caspase-3 enzyme activity, cleavage of DNA fragmentation factors 45 and DNA fragmentation were observed in MPP+ -treated cells. These changes were diminished by melatonin. These results demonstrate the cellular mechanisms of neuronal cell degeneration induced via c-Jun-N-terminal kinases and caspase-dependent signaling, and the potential role of melatonin on protection of neuronal cell death induced by this neurotoxin. [source]


G-CSF-mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus -induced suppression of TNF production in macrophages

CELLULAR MICROBIOLOGY, Issue 12 2006
Sung O. Kim
Summary Lactobacillus rhamnosus is a human commensal with known immunomodulatory properties. To date the mechanism of these immunomodulatory effects is not well understood. To unravel the immunomodulatory signalling mechanism, we investigated the effects of two strains of L. rhamnosus, L. rhamnosus GG and GR-1, in modulating production of tumour necrosis factor-, (TNF) in human monocytic cell line THP-1 and mouse macrophages. Live L. rhamnosus GG and GR-1 or their spent culture supernatant induced minuscule amounts of TNF production but large quantities of granulocyte-colony stimulating factor (G-CSF) in macrophages compared with those induced by pathogenic Escherichia coli GR-12 and Enterococcus faecalis. By using neutralizing antibodies and G-CSF receptor knockout mice, we demonstrated that G-CSF secreted from L. rhamnosus GG- and GR-1-exposed macrophages suppressed TNF production induced by E. coli - or lipopolysaccharide-activated macrophages through a paracrine route. The suppression of TNF production by G-CSF was mediated through activation of STAT3 and subsequent inhibition of c-Jun-N-terminal kinases (JNKs). The inhibition of JNK activation required STAT3,-mediated de novo protein synthesis. This demonstrates a novel role of G-CSF in L. rhamnosus -triggered anti-inflammatory effects and its mechanism in the suppression of TNF production in macrophages. [source]