CFTR Expression (cftr + expression)

Distribution by Scientific Domains


Selected Abstracts


Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

FEBS JOURNAL, Issue 2 2002
Marios Phylactides
The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex pattern of expression, with temporal and spatial regulation that is not accounted for by elements in the promoter. One approach to identifying the regulatory elements for CFTR is the mapping of DNase I hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2, 3, 10, 16, 17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhan- cer/reporter constructs containing the DHS regions showed that those in introns 20 and 21 augmented the activity of the CFTR promoter. Structural analysis of the DNA sequence at the DHS suggested that only the one intron 21 might be caused by inherent DNA structures. Cell specificity of the DHS suggested a role for the DHS in introns 2 and 18 in CFTR expression in some pancreatic duct cells. Finally, regulatory elements at the DHS in introns 10 and 18 may contribute to upregulation of CFTR gene transcription by forskolin and mitomycin C, respectively. These data support a model of regulation of expression of the CFTR gene in which multiple elements contribute to tightly co-ordinated expression in vivo. [source]


Expression of cystic fibrosis transmembrane conductance regulator in liver tissue from patients with cystic fibrosis

HEPATOLOGY, Issue 2 2000
Nils Kinnman M.D.
The authors examined the expression of cystic fibrosis transmembrane conductance regulator (CFTR) and its relationship to histopathological changes in cystic fibrosis (CF) liver tissue. Immunohistochemistry was used to examine expression of CFTR, intercellular adhesion molecule-1 (ICAM-1) and liver cell-type markers in liver cryosections in 11 patients with CF-associated liver disease, and non-CF controls with (n = 17) and without (n = 3) liver disease. In CF patients prominent inflammatory infiltrates were not found, yet hepatic stellate cells were identified within fibrotic areas around bile ducts. Proliferating bile ducts displayed ICAM-1 immunoreactivity in 3 cases, but bile ducts were otherwise negative. In 2 patients homozygous for R764X and for 1112delT no CFTR immunoreactivity was detected. Bile-duct epithelial cells in patients carrying the ,F508 mutation displayed aberrant cytoplasmic immunolocalization of CFTR, as determined with confocal laser scanning microscopy, in contrast to the distinct CFTR expression at the luminal surface seen in controls. No clear relationship between CFTR expression and fibrosis or inflammation was evidenced in CF patients. In conclusion, these findings are consistent with an impairment of ,F508 CFTR processing in intrahepatic biliary epithelium. ICAM-1 expression on bile-duct epithelial cells and inflammatory infiltrates were rare findings in CF liver tissue, indicating that immunological mechanisms are unlikely to be involved in initiation of CF-associated liver disease. [source]


Involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in the pathogenesis of hydrosalpinx induced by Chlamydia trachomatis infection

JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH (ELECTRONIC), Issue 6 2008
Louis Chukwuemeka Ajonuma
Abstract Background:, Genital Chlamydia (C) trachomatis infection has been recognized as the single most common cause of pelvic inflammatory disease leading to severe tubal damage, ectopic pregnancy, infertility and hydrosalpinx. However, the mechanism underlying the formation of hydrosalpinx induced by C. trachomatis infection remains largely unknown. We performed this study to determine the involvement of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel that regulates epithelial electrolyte and fluid secretion, in hydrosalpinx fluid formation. Methods:, Western blot analysis was used to determine CFTR expression in the hydrosalpinges that were seen on the ultrasound scans of infertile assisted reproduction treatment patients. Correlation with C. trachomatis infection was done by testing patients' sera for C. trachomatis immunoglobulin G antibody titer using a Capita enzyme-linked immunosorbent assay based kit. CFTR involvement was further verified in a rat C. trachomatis infection model and confirmed using CFTR mutant (CFTRtm1Unc) mice. Results:, Here we report on the up-regulated expression of CFTR in the hydrosalpinx tissues of infertile patients with detectable serum levels of C. trachomatis antibody (immunoglobulin G). In a rat model, increased CFTR expression and fluid accumulation could be observed in the uterine horns infected with C. trachomatis elementary bodies, which was reversed by antibiotics treatment. In C. trachomatis,infected CFTRtm1Unc mice, however, no detectable fluid accumulation was observed. Conclusion:, These findings suggest the involvement of CFTR in the pathogenesis of hydrosalpinx fluid formation and may provide grounds for a better treatment strategy to improve assisted reproduction treatment outcome in infertile patients with hydrosalpinx. [source]


The CFTR gene and regulation of its expression

PEDIATRIC PULMONOLOGY, Issue 1 2005
Victoria A. McCarthy
Abstract The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows clear temporal and developmental regulation of its expression. However, there are few well-defined regulatory elements that control this pattern of expression, and their mechanism of action is poorly understood. We review the structure and organization of the CFTR gene and what is known about its regulation. The CFTR gene promoter is clearly important for maintaining levels of CFTR gene expression, but apparently it does not contain any tissue-specific elements. Thus tissue-specificity is probably controlled by sequences lying elsewhere in this large gene. We discuss data from our group and others implicating additional regions of CFTR in regulatory functions, and evaluate candidate transcription factors that may be involved. Further, we summarize aspects of the regulation of the developmental expression of CFTR. Definition of CFTR gene regulatory elements could be of considerable therapeutic significance, since only a small increase in CFTR expression in the correct cell type could alleviate the disease phenotype. Pediatr Pulmonol © 2005 Wiley-Liss, Inc. [source]


Single-dose lentiviral gene transfer for lifetime airway gene expression

THE JOURNAL OF GENE MEDICINE, Issue 10 2009
Alice G. Stocker
Abstract Background Cystic fibrosis (CF) is caused by a defect in cystic fibrosis transmembrane conductance regulator (CFTR) activity, often resulting in an incurable airway disease. Gene therapy into the conducting airway epithelium is a potential cure for CF; however, most gene vectors do not result in long-lived expression, and require re-dosing. Perversely, intrinsic host immune responses can then block renewed gene transfer. Methods To investigate whether persistent gene expression could be achieved after a single dosing event, thus avoiding the issue of blocking host responses, we used a gene transfer protocol that combined an airway pretreatment using lysophosphatidylcholine with a human immunodeficiency virus type-1 (vesicular stomatitis virus G pseudotype) derived lentiviral vector to test whether an integrating vector could produce gene expression able to last for a substantial part of the lifetime of the laboratory mouse. Results We found that a single dose of LV-LacZ produced immediate as well as lifetime mouse airway expression, confirming our hypothesis that use of an integrating vector extends transgene expression. Importantly, LV-CFTR dosing achieved at least 12 months of CFTR expression, representing partial functional correction of the CFTR defect in CF-null mice. Conclusions These findings validate the potential of this methodology for developing a gene transfer treatment for CF airway disease. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Cystic fibrosis transmembrane conductance regulator in human muscle: Dysfunction causes abnormal metabolic recovery in exercise

ANNALS OF NEUROLOGY, Issue 6 2010
Anne-Marie Lamhonwah PhD
Objective Individuals with cystic fibrosis (CF) have exercise intolerance and skeletal muscle weakness not solely attributable to physical inactivity or pulmonary function abnormalities. CF transmembrane conductance regulator (CFTR) has been demonstrated in human bronchial smooth and cardiac muscle. Using 31P-magnetic resonance spectroscopy of skeletal muscle, we showed CF patients to have lower resting muscle adenosine triphosphate and delayed phosphocreatine recovery times after high-intensity exercise, suggesting abnormal muscle aerobic metabolism; and higher end-exercise pH values, suggesting altered bicarbonate transport. Our objective was to study CFTR expression in human skeletal muscle. Methods and Results We studied CFTR expression in human skeletal muscle by Western blot with anti-CFTR antibody (Ab) L12B4 and demonstrated a single band with expected molecular weight of 168kDa. We isolated the cDNA by reverse transcription polymerase chain reaction and directly sequenced a 975bp segment (c. 3,600,4,575) that was identical to the human CFTR sequence. We showed punctate staining of CFTR in sarcoplasm and sarcolemma by immunofluorescence microscopy with L12B4 Ab and secondary Alexa 488-labeled Ab. We confirmed CFTR expression in the sarcotubular network and sarcolemma by electron microscopy, using immunogold-labeled anti-CFTR Ab. We observed activation of CFTR Cl, channels with iodide efflux, on addition of forskolin, 3-isobutyl-1-methyl-xanthine, and 8-chlorphenylthio,cyclic adenosine monophosphate, in wild-type C57BL/6J isolated muscle fibers in contrast to no efflux from mutant F508del-CFTR muscle. Interpretation We speculate that a defect in sarcoplasmic reticulum CFTR Cl, channels could alter the electrochemical gradient, causing dysregulation of Ca2+ homeostasis, for example, ryanodine receptor or sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatases essential to excitation-contraction coupling leading to exercise intolerance and muscle weakness in CF. ANN NEUROL 2010 [source]