C-fos mRNA Expression (c-fo + mrna_expression)

Distribution by Scientific Domains


Selected Abstracts


Is right hemisphere specialization for face discrimination specific to humans?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2000
Kevin D. Broad
Abstract Patterns of neural activation during face recognition were investigated in sheep by quantifying altered c-fos mRNA expression in situations where faces (sheep vs. human) can (faces upright) and cannot (faces inverted) be discriminated. Exposure to upright faces selectively increased expression significantly more in the right inferior temporal cortex than in the left, and active choice between upright faces additionally increased expression bilaterally in basal amygdala and hippocampus (CA1,4). Exposure to inverted faces did not lead to enhanced activation in the right inferior temporal cortex, amygdala or hippocampus but instead increased expression levels in the diagonal band of Broca, parietal and cingulate cortices. These results show that discrimination of upright faces in sheep preferentially engages the right temporal cortex, as it does in humans, and that performance of active choices between such faces may additionally involve the basal amygdala and hippocampus. [source]


The hippocampus plays a critical role at encoding discontiguous events for subsequent declarative memory expression in mice

HIPPOCAMPUS, Issue 4 2007
Frédérique Mingaud
Abstract The hypothesis that hippocampal activity at encoding is causally related to subsequent declarative memory expression is tested in the mouse, by using lidocaine inactivation of the hippocampus in combination with c-fos neuroimaging analysis. We employed a two-stage radial maze paradigm of spatial discrimination, which was previously shown to dissociate between declarative and nondeclarative expression of memory related to the same acquired material. In Stage 1 (encoding), mice learnt the constant location of food among a set of six arms (three baited, three unbaited) by being submitted repeatedly to discontiguous experiences with each arm separately ("go/no-go" discrimination). In Stage 2 (test-session), they are challenged with novel presentations of the arms, which are either combined into pairs of opposite valence ("two-choice" discrimination), or opened all six together ("six-choice" discrimination). Previous experiments have demonstrated that the "two-choice" situation is a critical test for declarative memory while "six-choice" discrimination may rely on procedural memory. We observed that (i) hippocampal activity measured by c-fos mRNA expression was increased by "go/no-go" learning, and this activation was blocked by pre-training local infusions of lidocaine; (ii) when performed just before each session of Stage 1, such inactivation spared the acquisition of "go/no-go" discrimination but produced, subsequently, a selective deficit in the "two-choice" test (not in the "six-choice" test). This study indicates that the hippocampus is "spontaneously" engaged in encoding processes necessary for long-term storage of discontiguous experiences under a form enabling flexible declarative memory expression. © 2007 Wiley-Liss, Inc. [source]


Rhythm-Dependent Light Induction of the c-fos Gene in the Turkey Hypothalamus

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2007
A. Thayananuphat
Day length (photoperiod) is a powerful synchroniser of seasonal changes in the reproductive neuroendocrine activity in temperate-zone birds. When exposed to light during the photoinducible phase, reproductive neuroendocrine responses occur. However, the neuroendocrine systems involved in avian reproduction are poorly understood. We investigated the effect of light exposure at different circadian times upon the hypothalamus and components of the circadian system, using c-fos mRNA expression, measured by in situ hybridisation, as an indicator of light-induced neuronal activity. Levels of c-fos mRNA in these areas were compared after turkey hens (on a daily 6-h light period) had been exposed to a 30-min period of light occurring at 8, 14, or 20 h after the onset of first light of the day (subjective dawn). Non-photostimulated control birds were harvested at the same times. In birds, photostimulated within the photoinducibile phase (14 h), in contrast to before or after, c-fos mRNA was significantly increased in the nucleus commissurae pallii (nCPa), nucleus premamillaris (PMM), eminentia mediana (ME), and organum vasculosum lamina terminalis (OVLT). Photostimulation increased c-fos mRNA expression in the pineal gland, nucleus suprachiasmaticus, pars visualis (vSCN) and nucleus inferioris hypothalami compared to that of their corresponding nonphotostimulated controls. However, the magnitudes of the responses in these areas were similar irrespective of where in the dark period the pulses occurred. No c-fos mRNA was induced in the nucleus infundibulari, in response to the 30-min light period at any of the circadian times tested. The lack of c-fos up-regulation in the pineal gland and vSCN following photostimulation during the photoinducible phase lends credence to the hypothesis that these areas are not involved in the photic initiation of avian reproduction. On the other hand, c-fos mRNA increases in the nCPa, ME, and OVLT support other studies showing that these areas are involved in the onset of reproductive behaviour initiated by long day lengths. The present study provides novel data showing that the PMM in the caudal hypothalamus is involved in the neuronally mediated, light-induced initiation of reproductive activity in the turkey hen. [source]


Isolation of enteric glia and establishment of transformed enteroglial cell lines from the myenteric plexus of adult rat

NEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2001
A. Rühl
Although enteroglial cells (EGCs) may play a key role in the inflammatory response of the enteric nervous system, little is known about their immunophysiological properties. To facilitate further characterization of enteric glia, we have developed a novel method to isolate and purify EGCs from the myenteric plexus. Myenteric plexus preparations were enzymatically dissociated and EGCs purified by complement-mediated cytolysis of contaminating cells and transformed by retroviral gene transfer. Primary and transformed cells were characterized immunohistochemically and by dot-blot analysis. Functionally, c-fos mRNA expression was assessed in primary and transformed enteroglial cells. All cells displayed robust glial fibrillary acidic protein, S-100 and vimentin immunoreactivities, but no Thy-1.1, desmin, smooth muscle ,-actin or C3 complement receptor immunoreactivity. This confirmed their enteroglial lineage and excluded contamination with other cell types. Both primary and transformed EGCs displayed little constitutive c-fos mRNA expression. This, however, could be upregulated by various stimuli, including proinflammatory cytokines. In summary, we present a novel method to purify EGCs from rat myenteric plexus for tissue culture and to establish transformed EGC lines that retain their glial nature and functional properties. Such cell lines are now available for physiological studies of the functional properties of enteric glia in vitro. [source]