| |||
CFD Study (cfd + study)
Selected AbstractsCFD Study of Effects of Module Geometry on Forced Convection in a Channel with Non-Conducting Fins and Flow PulsationCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 10 2010B. O. Olayiwola Abstract CFD simulations were carried out to investigate the effects of the module geometry on forced convection in a rectangular channel containing series of regularly spaced non-conducting baffles with flow oscillation. The simulations were performed at constant wall temperature. Steady-flow Reynolds numbers Re in the range of 200 and 600 were studied. The results of the CFD simulations show that, for the effect fin spacing to be significant on heat transfer enhancement in finned system with oscillating flow, the oscillating flow velocity must be higher than the mean flow velocity. Superposition of oscillation yields increasing heat transfer performance with increasing fin height. Fin geometry with pyramidal shape yields highest performance in terms of the heat transfer effectiveness. [source] The performance of natural draft dry cooling towers under crosswind: CFD studyINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2004Rafat Al-Waked Abstract The thermal performance of a natural draft dry cooling tower (NDDCT) under a crosswind has been investigated using a general-purpose CFD code. A three-dimensional study using the standard k,, turbulence model to simulate airflow in and around an NDDCT has been conducted. A parametric study has been carried out to examine the effect of crosswind velocity profile and air dry-bulb temperature on the thermal performance of an NDDCT. Two approaches have been considered in this study to quantify the crosswind effect. Firstly, simulations have been conducted at the nominal conditions and crosswind effect has been represented by thermal effectiveness parameter. Secondly, the ejected heat from the NDDCT has been maintained at a constant value (285 MW) and the crosswind effect has been represented by the change in the cooling tower approach parameter. After quantifying the effect of the crosswind on the thermal performance, windbreak walls have been introduced as a means of reducing this effect. The results in this paper show the importance of considering the crosswind velocity profile. Moreover, the introduction of windbreak walls has indicated an improvement in reducing the thermal performance losses due to the crosswind. Copyright © 2004 John Wiley & Sons, Ltd. [source] Experimental validation of CFD simulations of a lab-scale fluidized-bed reactor with and without side-gas injectionAICHE JOURNAL, Issue 6 2010Jian Min Abstract Fluidized-bed reactors are widely used in the biofuel industry for combustion, pyrolysis, and gasification processes. In this work, a lab-scale fluidized-bed reactor without and with side-gas injection and filled with 500,600 ,m glass beads is simulated using the computational fluid dynamics (CFD) code Fluent 6.3, and the results are compared to experimental data obtained using pressure measurements and 3D X-ray computed tomography. An initial grid-dependence CFD study is carried out using 2D simulations, and it is shown that a 4-mm grid resolution is sufficient to capture the time- and spatial-averaged local gas holdup in the lab-scale reactor. Full 3D simulations are then compared with the experimental data on 2D vertical slices through the fluidized bed. Both the experiments and CFD simulations without side-gas injection show that in the cross section of the fluidized bed there are two large off-center symmetric regions in which the gas holdup is larger than in the center of the fluidized bed. The 3D simulations using the Syamlal-O'Brien and Gidaspow drag models predict well the local gas holdup variation throughout the entire fluidized bed when compared to the experimental data. In comparison, simulations with the Wen-Yu drag model generally over predict the local gas holdup. The agreement between experiments and simulations with side-gas injection is generally good, where the side-gas injection simulates the immediate volatilization of biomass. However, the effect of the side-gas injection extends further into the fluidized bed in the experiments as compared to the simulations. Overall the simulations under predict the gas dispersion rate above the side-gas injector. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] CFD study of mixing characteristics of bubble column and external loop airlift reactorASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2008S. Roy Abstract In the present work, a computational fluid dynamics study has been carried out to bring out the mixing characteristics of bubble column and external loop airlift reactor. A comparison of mixing time for two reactors has been presented on the basis of the same reactor volume as well as the total power input. The CFD model was validated by simulating flow, both in bubble column and external loop airlift reactor. An agreement was observed between the predicted and the experimental data available in the published literature. The validated CFD model has been extended for the simulation of the mixing time for both the reactors. The CFD predictions of mixing time show good agreement with the experimental values published in literature. A systematic numerical study was then carried out to bring out the mixing characteristics of both the reactors. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source] |