cDNA Sequences (cdna + sequence)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of cDNA Sequences

  • partial cdna sequence


  • Selected Abstracts


    Recombinant clotting factor VIII concentrates: Heterogeneity and high-purity evaluation

    ELECTROPHORESIS, Issue 16 2010
    Gian Maria D'Amici
    Abstract Factor VIII is an important glycoprotein involved in hemostasis. Insertion of expression vectors containing either the full-length cDNA sequence of human factor VIII (FLrFVIII) or B-domain deleted (BDDrFVIII) into mammalian cell lines results in the production of recombinant factor VIII (rFVIII) for therapeutic usage. Three commercially available rFVIII concentrates (Advate®, Helixate NexGen® and Refacto®), either FLrFVIII or BDDrFVIII, were investigated by 1- and 2-DE and MS. The objective of this study was to compare the heterogeneity and the high purity of both rFVIII preparations before and after thrombin digestion. In particular, the 2-D gel was optimized to better highlight the presence of contaminants and many unexpected proteins. Recombinant strategies consisting of insertion of expression vectors containing BDDrFVIII and FLrFVIII resulted in homogeneous and heterogeneous protein products, respectively, the latter consisting in a heterogeneous mixture of various B-domain-truncated forms of the molecule. Thrombin digestion of all the three rFVIII gave similar final products, plus one unexpected fragment of A2 domain missing 11 amino acids. Regarding the contaminants, Helixate NexGen® showed the presence of impurities, such as Hsp70,kDa, haptoglobin and proapolipoprotein; Refacto® showed glutathione S -transferase and ,-lactamase, whereas Advate® apparently did not contain any contaminants. The proteomic approach will contribute to improving the quality assurance and manufacturing processes of rFVIII concentrates. In this view, the 2-DE is mandatory for revealing the presence of contaminants. [source]


    The fabp4 gene of zebrafish (Danio rerio) , genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression

    FEBS JOURNAL, Issue 6 2007
    Rong-Zong Liu
    Teleost fishes differ from mammals in their fat deposition and distribution. The gene for adipocyte-type fatty acid-binding protein (A-FABP or FABP4) has not been identified thus far in fishes. We have determined the cDNA sequence and defined the structure of a fatty acid-binding protein gene (designated fabp4) from the zebrafish genome. The polypeptide sequence encoded by zebrafish fabp4 showed highest identity to the Had -FABP or H6-FABP from Antarctic fishes and the putative orthologs from other teleost fishes (83,88%). Phylogenetic analysis clustered the zebrafish FABP4 with all Antarctic fish H6-FABPs and putative FABP4s from other fishes in a single clade, and then with the mammalian FABP4s in an extended clade. Zebrafish fabp4 was assigned to linkage group 19 at a distinct locus from fabp3. A number of closely linked syntenic genes surrounding the zebrafish fabp4 locus were found to be conserved with human FABP4. The zebrafish fabp4 transcripts showed sequential distribution in the developing eye, diencephalon and brain vascular system, from the middle somitogenesis stage to 48 h postfertilization, whereas fabp3 mRNA was located widely in the embryonic and/or larval central nervous system, retina, myotomes, pancreas and liver from middle somitogenesis to 5 days postfertilization. Differentiation in developmental regulation of zebrafish fabp4 and fabp3 gene transcription suggests distinct functions for these two paralogous genes in vertebrate development. [source]


    BJ46a, a snake venom metalloproteinase inhibitor

    FEBS JOURNAL, Issue 10 2001
    Isolation, characterization, cloning, insights into its mechanism of action
    Fractionation of the serum of the venomous snake Bothrops jararaca with (NH4)2SO4, followed by phenyl-Sepharose and C4 -reversed phase chromatographies, resulted in the isolation of the anti-hemorrhagic factor BJ46a. BJ46a is a potent inhibitor of the SVMPs atrolysin C (class P-I) and jararhagin (P-III) proteolytic activities and B. jararaca venom hemorrhagic activity. The single-chain, acidic (pI 4.55) glycoprotein has a molecular mass of 46 101 atomic mass units determined by MALDI-TOF MS and 79 kDa by gel filtration and dynamic laser light scattering, suggesting a homodimeric structure. mRNA was isolated from the liver of one specimen and transcribed into cDNA. The cDNA pool was amplified by PCR, cloned into a specific vector and used to transform competent cells. Clones containing the complete coding sequence for BJ46a were isolated. The deduced protein sequence was in complete agreement with peptide sequences obtained by Edman degradation. BJ46a is a 322-amino-acid protein containing four putative N-glycosylation sites. It is homologous to the proteinase inhibitor HSF (member of the fetuin family, cystatin superfamily) isolated from the serum of the snake Trimeresurus flavoviridis, having 85% sequence identity. This is the first report of a complete cDNA sequence for an endogenous inhibitor of snake venom metalloproteinases (SVMPs). The sequence reveals that the only proteolytic processing required to obtain the mature protein is the cleavage of the signal peptide. Gel filtration analyses of the inhibitory complexes indicate that inhibition occurs by formation of a noncovalent complex between BJ46a and the proteinases at their metalloproteinase domains. Furthermore, the data shows that the stoichiometry involved in this interaction is of one inhibitor monomer to two enzyme molecules, suggesting an interesting mechanism of metalloproteinase inhibition. [source]


    Mutations in the holocarboxylase synthetase gene HLCS,

    HUMAN MUTATION, Issue 4 2005
    Yoichi Suzuki
    Abstract Holocarboxylase synthetase (HLCS) deficiency is an autosomal recessive disorder. HLCS is an enzyme that catalyzes biotin incorporation into carboxylases and histones. Since the first report of the cDNA sequence, 30 mutations in the HLCS gene have been reported. Mutations occur throughout the entire coding region except exons 6 and 10. The types of mutations are one single amino acid deletion, five single nucleotide insertions/deletions, 22 missense mutations, and two nonsense mutations. The only intronic mutation identified thus far is c.1519+5G>A (also designated IVS10+5G>A), which causes a splice error. Several lines of evidence suggest that c.1519+5G>A is a founder mutation in Scandinavian patients. Prevalence of this mutation is about 10 times higher in the Faroe Islands than in the rest of the world. The mutations p.L237P and c.780delG are predominant only in Japanese patients. These are probably founder mutations in this population. Mutations p.R508W and p.V550M are identified in several ethic groups and accompanied with various haplotypes, suggesting that these are recurrent mutations. There is a good relationship between clinical biotin responsiveness and the residual activity of HLCS. A combination of a null mutation and a point mutation that shows less than a few percent of the normal activity results in neonatal onset. Patients who have mutant HLCS with higher residual activity develop symptom after the neonatal period and show a good clinical response to biotin therapy. Hum Mutat 26(4), 285,290, 2005. © 2005 Wiley-Liss, Inc. [source]


    Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs)

    INSECT MOLECULAR BIOLOGY, Issue 6 2008
    B. S. Coates
    Abstract Genes expressed in lepidopteran midgut tissues are involved in digestion and Bacillus thuringiensis (Bt) toxin resistance traits. Five hundred and thirty five unique transcripts were annotated from 1745 high quality O. nubilalis larval midgut expressed sequence tags (ESTs). Full-length cDNA sequence of 12 putative serine proteinase genes and 3 partial O. nubilalis aminopeptidase N protein genes, apn1, apn3, and apn4, were obtained, and genes may have roles in plant feeding and Bt toxin resistance traits of Ostrinia larvae. The EST library was not normalized and insert frequencies reflect transcript levels under the initial treatment conditions and redundancy of inserts from highly expressed transcripts allowed prediction of putative single nucleotide polymorphisms (SNPs). Ten di-, tri- or tetranucleotide repeat unit microsatellite loci were identified, and minisatellite repeats were observed within the C-termini of two encoded serine proteinases. Molecular markers showed polymorphism at 28 SNP loci and one microsatellite locus, and Mendelian inheritance indicated that markers were applicable to genome mapping applications. This O. nubilalis larval midgut EST collection is a resource for gene discovery, expression information, and allelic variation for use in genetic marker development. [source]


    Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone

    INSECT MOLECULAR BIOLOGY, Issue 5 2004
    A. R. Barchuk
    Abstract Two hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development including the differentiation of the alternative caste phenotypes of social insects. In addition, JH plays a different role in adult honey bees, acting as a ,behavioural pacemaker'. The functional receptor for 20E is a heterodimer consisting of the ecdysone receptor and ultraspiracle (USP) whereas the identity of the JH receptor remains unknown. We have cloned and sequenced a cDNA encoding Apis mellifera ultraspiracle (AMUSP) and examined its responses to JH. A rapid, but transient up-regulation of the AMUSP messenger is observed in the fat bodies of both queens and workers. AMusp appears to be a single copy gene that produces two transcripts (,4 and ,5 kb) that are differentially expressed in the animal's body. The predicted AMUSP protein shows greater sequence similarity to its orthologues from the vertebrate,crab,tick,locust group than to the dipteran,lepidopteran group. These characteristics and the rapid up-regulation by JH suggest that some of the USP functions in the honey bee may depend on ligand binding. [source]


    cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the Indianmeal moth, Plodia interpunctella

    INSECT MOLECULAR BIOLOGY, Issue 1 2000
    Y. C. Zhu
    Abstract Trypsin-like enzymes are major insect gut enzymes that digest dietary proteins and proteolytically activate insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). Resistance to Bt in a strain of the Indianmeal moth, Plodia interpunctella, was linked to the absence of a major trypsin-like proteinase (Oppert et al., 1997). In this study, trypsin-like proteinases, cDNA sequences, mRNA expression levels and genomic DNAs from Bt-susceptible and -resistant strains of the Indianmeal moth were compared. Proteinase activity blots of gut extracts indicated that the susceptible strain had two major trypsin-like proteinases, whereas the resistant strain had only one. Several trypsinogen-like cDNA clones were isolated and sequenced from cDNA libraries of both strains using a probe deduced from a conserved sequence for a serine proteinase active site. cDNAs of 852 nucleotides from the susceptible strain and 848 nucleotides from the resistant strain contained an open reading frame of 783 nucleotides which encoded a 261-amino acid trypsinogen-like protein. There was a single silent nucleotide difference between the two cDNAs in the open reading frame and the predicted amino acid sequence from the cDNA clones was most similar to sequences of trypsin-like proteinases from the spruce budworm, Choristoneura fumiferana, and the tobacco hornworm, Manduca sexta. The encoded protein included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Northern blotting analysis showed no major difference between the two strains in mRNA expression in fourth-instar larvae, indicating that transcription was similar in the strains. Southern blotting analysis revealed that the restriction sites for the trypsinogen genes from the susceptible and resistant strains were different. Based on an enzyme size comparison, the cDNA isolated in this study corresponded to the gene for the smaller of two trypsin-like proteinases, which is found in both the Bt-susceptible and -resistant strains of the Indianmeal moth. The sequences reported in this paper have been deposited in the GenBank database (accession numbers AF064525 for the RC688 strain and AF064526 for HD198). [source]


    Purification and characterization of ,-glucosidase in Apis cerana indica

    INSECT SCIENCE, Issue 3 2008
    Chanpen Chanchao
    Abstract Apis cerana indica foragers were used for the isolation of a full-length ,-glucosidase cDNA, and for purification of the active nascent protein by low salt extraction of bee homogenates, ammonium sulphate precipitation and diethylaminoethyl-cellulose and Superdex 200 chromatographies. The molecular mass of the purified protein was estimated by polyacrylamide gel electrophoresis resolution, and the pH, temperature, incubation, and substrate optima for enzymic activity were determined. Conformation of the purified enzyme as ,-glucosidase was performed by BLAST software homology comparisons between matrix assisted laser desorption ionization time of flight mass spectroscopy analysed partial tryptic peptide digests of the purified protein with the predicted amino acid sequences deduced from the ,-glucosidase cDNA sequence. [source]


    Partial genomic organization of ribosomal protein S7 gene from malaria vector Anopheles stephensi

    INSECT SCIENCE, Issue 2 2007
    RAJNIKANT DIXIT
    Abstract In this study, we describe the partial genomic organization of ribosomal protein S7 gene isolated from the mosquito Anopheles stephensi. Initially a 558 bp partial cDNA sequence was amplified as precursor mRNA sequence containing 223 bp long intron. 5, and 3, end sequences were recovered using end specific rapid amplification of cDNA ends (RACE) polymerase chain reaction. The full-length cDNA sequence was 914 nucleotide long with an open reading frame capable of encoding 192 amino acid long protein with calculated molecular mass of 22 174 Da and a pI point of 9.94. Protein homology search revealed > 75% identity to other insect's S7 ribosomal proteins. Analysis of sequence alignment revealed several highly conserved domains, one of which is related to nuclear localization signal (NLS) region of human rpS7. Interestingly, intron nucleotide sequence comparison with A. gambiae showed a lesser degree of conservation as compared to coding and untranslated regions. Like this, early studies on the genomic organization and cDNA/ Expressed sequence tag analysis (EST) could help in genome annotation of A. stephensi, and would be likely to be sequenced in the future. [source]


    The hemopexin domain of MMP-9 inhibits angiogenesis and retards the growth of intracranial glioblastoma xenograft in nude mice

    INTERNATIONAL JOURNAL OF CANCER, Issue 2 2009
    Ravesanker Ezhilarasan
    Abstract Matrix Metalloproteinase-9 (MMP-9) consists of a prodomain, catalytic domain with 3 fibronectin-like type II modules and C-terminal hemopexin-like (PEX) domain. These domains play distinct roles in terms of proteolytic activity, substrate binding and interaction with inhibitors and receptors. To assess the potential of the MMP-9-PEX domain to interfere with tumor progression, we stably transfected human glioblastoma cells with an expression vector containing a cDNA sequence of the MMP-9-PEX. The selected clones exhibited decreased MMP-9 activity and reduced invasive capacity. We assessed how secretion of MMP-9-PEX by glioblastoma cells affects angiogenic capabilities of human microvascular endothelial cells (HMECs) in vitro. MMP-9-PEX conditioned medium treatment caused a reduction in migration of HMECs and inhibited capillary-like structure formation in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level. The suppression of HMECs survival by conditioned medium from MMP-9-PEX stable transfectants was associated with apoptosis induction characterized by an increase in cells with a sub-G0/G1 content, fragmentation of DNA, caspase-3, -8 and -9 activation and poly (ADP-ribose) polymerase (PARP) cleavage. A significant tumor growth inhibition was observed in intracranial implants of MMP-9-PEX stable transfectants in nude mice with attenuation of CD31 and MMP-9 protein expression. These results demonstrate that MMP-9-PEX inhibits angiogenic features of endothelial cells and retards intracranial glioblastoma growth. © 2008 Wiley-Liss, Inc. [source]


    Buffalo (Bubalus bubalis) interleukin-2: sequence analysis reveals high nucleotide and amino acid identity with interleukin-2 of cattle and other ruminants

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 4 2002
    E. Sreekumar
    Summary A 4400-bp genomic sequence and a 332-bp truncated cDNA sequence of the interleukin-2 (IL-2) gene of Indian water buffalo (Bubalus bubalis) were amplified by polymerase chain reaction and cloned. The coding sequence of the buffalo IL-2 gene was assembled from the 5, end of the genomic clone and the truncated cDNA clone. This sequence had 98.5% nucleotide identity and 98% amino acid identity with cattle IL-2. Three amino acid substitutions were observed at positions 63, 124 and 135. Comparison of the predicted protein structure of buffalo IL-2 with that of human and cattle IL-2 did not reveal significant differences. The putative amino acids responsible for IL-2 receptor binding were conserved in buffalo, cattle and human IL-2. The amino acid sequence of buffalo IL-2 also showed very high identity with that of other ruminants, indicating functional cross-reactivity. [source]


    Expression of ,-defensin-1 in chimpanzee (Pan troglodytes) airways

    JOURNAL OF MEDICAL PRIMATOLOGY, Issue 5 2000
    Louise A. Duits
    In human airways, ,-defensins function in the elimination of various pathogens. They have been identified in a wide range of species. Here we report the identification and expression of chimpanzee ,-defensin-1 (cBD1), which is a homolog of human ,-defensin-1, in chimpanzee airways and skin. The cBD1 cDNA sequence differs by only one synonymous nucleotide substitution compared to the human cDNA sequence. In situ hybridization revealed that in lung tissue beside alveolar macrophages also airway epithelial cells, endothelial cells and type II pneumocytes express cBD1 mRNA. In skin, cBD1 mRNA was expressed in keratinocytes and endothelial cells. Together, these results show similarity in structure and expression pattern and perhaps in function. [source]


    Mutation Causing von Willebrand's Disease in Scottish Terriers

    JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2000
    Patrick J. Venta
    Von Willebrand's Disease (vWD) in the Scottish Terrier breed is a serious, often fatal, hereditary bleeding disorder. Elimination of the mutated gene by selective breeding is an important goal for the health of this breed. Although the standard protein-based tests are accurate for identification of affected Scottish Terriers, they are not reliable for the identification of carriers of the mutant gene unless multiple replicate assays are performed. A simple, highly accurate test for carriers of the disease is needed so that veterinarians can counsel clients on which animals to use in their breeding programs. The complete coding region of von Willebrand factor (vWF) complementary DNA (cDNA) was sequenced from an affected animal, and a single base deletion in the codon for amino acid 85 of the prepro-vWF cDNA that leads to Scottish Terrier vWD was identified. A highly accurate polymerase chain reaction assay was developed that can distinguish homozygous normal animals from those that are homozygous affected or heterozygous. In a voluntary survey of 87 animals provided by Scottish Terrier owners, 15 were carriers and 4 were affected with vWD, 2 of which had previously been shown to have undetectable vWF. The determination of the complete canine vWF cDNA sequence should facilitate the identification of additional vWD alleles in other breeds and other species. [source]


    Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology

    MOLECULAR PLANT PATHOLOGY, Issue 4 2009
    IAN P. ADAMS
    SUMMARY A novel, unbiased approach to plant viral disease diagnosis has been developed which requires no a priori knowledge of the host or pathogen. Next-generation sequencing coupled with metagenomic analysis was used to produce large quantities of cDNA sequence in a model system of tomato infected with Pepino mosaic virus. The method was then applied to a sample of Gomphrena globosa infected with an unknown pathogen originally isolated from the flowering plant Liatris spicata. This plant was found to contain a new cucumovirus, for which we suggest the name ,Gayfeather mild mottle virus'. In both cases, the full viral genome was sequenced. This method expedites the entire process of novel virus discovery, identification, viral genome sequencing and, subsequently, the development of more routine assays for new viral pathogens. [source]


    cDNA nucleotide sequence coding for stearoyl-CoA desaturase and its expression in the zebrafish (Danio rerio) embryo,

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2003
    S.L. Hsieh
    Abstract A cDNA sequence of stearoyl-CoA desaturase (SCD) was determined from zebrafish (Danio rerio) and compared to the corresponding genes in several teleosts. Zebrafish SCD cDNA has a size of 1,061 bp, encodes a polypeptide of 325 amino acids, and shares 88, 85, 84, and 83% similarities with tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idella), common carp (Cyprinus carpio), and milkfish (Chanos chanos), respectively. This 1,061 bp sequence specifies a protein that, in common with other fatty acid desaturases, contains three histidine boxes, believed to be involved in catalysis. These observations suggested that SCD genes are highly conserved. In addition, an oligonucleotide probe complementary to zebrafish SCD mRNA was hybridized to mRNA of approximately 396 bases with Northern blot analysis. The Northern blot and RT-PCR analyses showed that the SCD mRNA was expressed predominantly in the liver, intestine, gill, and muscle, while a lower level was found in the brain. Furthermore, we utilized whole-mount in situ hybridization and real-time quantitative RT-PCR to identify expression of the zebrafish SCD gene at five different stages of development. This revealed that very high levels of transcripts were found in zebrafish at all stages during embryogenesis and early development. Mol. Reprod. Dev. 66: 325,333, 2003. © 2003 Wiley-Liss, Inc. [source]


    Isolation of high-quality RNA from white spruce tissue using a three-stage purification method and subsequent cloning of a transcript from the PR-10 gene family

    PHYTOCHEMICAL ANALYSIS, Issue 4 2003
    Nathalie Mattheus
    Abstract Isolation of PinmIII cDNA homologues from white spruce tissues required a rigorous RNA extraction protocol developed following assessment of three previously reported conifer RNA extraction protocols. Total RNA was extracted via several purification steps designed to minimize binding of phenolics to nucleic acids and was then subjected to caesium chloride ultra-centrifugation. This procedure produced consistently high-quality, intact RNA from both needles and roots with spectrophotometric ratios of approximately 2.0 for both 260/280,nm and 260/230,nm. Total RNA was obtained from the roots of cold-hardened white spruce seedlings for cDNA library construction. More than 2 million recombinant phage particles were generated from 5,µg of a poly(A)+RNA fraction, and ca. 1.3 million cDNA particles were amplified for storage. Approximately 500,000 primary recombinant clones were screened with an heterologous PinmIII cDNA sequence yielding a unique clone, picg1, that was very similar to members of the PR10 gene family. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Molecular analysis of genomic DNA allows rapid, and accurate, prenatal diagnosis of peroxisomal D-bifunctional protein deficiency

    PRENATAL DIAGNOSIS, Issue 1 2002
    B. C. Paton
    Abstract Prenatal diagnosis was requested for a couple with a previous child affected by the peroxisomal disorder D-bifunctional protein deficiency. Prior analysis of the D-bifunctional protein cDNA sequence from the propositus had shown that it was missing 22,bp. This was subsequently attributed to a point mutation in the intron 5 donor site (IVS5+1G>C) of the D-bifunctional protein gene. Consistent with parental consanguinity, the patient was shown to be homozygous for this mutation, which is associated with loss of a Hph 1 restriction site in the genomic sequence. Prenatal testing of the fetus using genomic DNA isolated from uncultured amniocytes indicated that both alleles of the D-bifunctional protein had the IVS5+1G>C substitution. The peroxisomal defect was later confirmed biochemically using cultured amniocytes, which were found to have elevated levels of very long chain fatty acids (VLCFA). This is the first report of prenatal diagnosis of D-bifunctional protein deficiency using molecular analysis of genomic DNA. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Identification and Functional Characterization of the Delta 6-Fatty Acid Desaturase Gene from Thamnidium elegans

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2007
    DEPEI WANG
    ABSTRACT. A cDNA sequence was cloned from the filamentous fungus Thamnidium elegans As3.2806 using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends method (RACE). Sequence analysis indicated that this cDNA sequence has an open reading frame of 1,380 bp, which encodes a 52.4 kDa peptide of 459 amino acids. The designated amino acid sequence has high similarity with that found in fungal delta 6-fatty acid desaturases: it shows three conserved histidine-rich motifs and two hydrophobic domains. A cytochrome b5-like domain was observed at the N-terminus. To elucidate the function of this novel putative desaturase, the open reading frame was cloned into the intracellular expression vector pPIC3.5K and the gene was expressed heterologously in Pichia pastoris. Accumulation of ,-linolenic acid to the level of 6.83% in total fatty acid demonstrated that the deduced amino acid sequence possesses of delta 6-fatty acid desaturase activity. [source]


    Isolation and characterization of the RAD54 gene from Arabidopsis thaliana

    THE PLANT JOURNAL, Issue 6 2006
    Keishi Osakabe
    Summary Homologous recombination (HR) is an essential process in maintaining genome integrity and variability. In eukaryotes, the Rad52 epistasis group proteins are involved in meiotic recombination and/or HR repair. One member of this group, Rad54, belongs to the SWI2/SNF2 family of DNA-stimulated ATPases. Recent studies indicate that Rad54 has important functions in HR, both as a chromatin remodelling factor and as a mediator of the Rad51 nucleoprotein filament. Despite the importance of Rad54 in HR, no study of Rad54 from plants has yet been performed. Here, we cloned the full-length AtRAD54 cDNA sequence; an open reading frame of 910 amino acids encodes a protein with a predicted molecular mass of 101.9 kDa. Western blotting analysis showed that the AtRad54 protein was indeed expressed as a protein of approximately 110 kDa in Arabidopsis. The predicted protein sequence of AtRAD54 contains seven helicase domains, which are conserved in all other Rad54s. Yeast two-hybrid analysis revealed an interaction between Arabidopsis Rad51 and Rad54. AtRAD54 transcripts were found in all tissues examined, with the highest levels of expression in flower buds. Expression of AtRAD54 was induced by , -irradiation. A T-DNA insertion mutant of AtRAD54 devoid of full-length AtRAD54 expression was viable and fertile; however, it showed increased sensitivity to , -irradiation and the cross-linking reagent cisplatin. In addition, the efficiency of somatic HR in the mutant plants was reduced relative to that in wild-type plants. Our findings point to an important role for Rad54 in HR repair in higher plants. [source]


    Bovine melanocortin receptor 4: cDNA sequence, polymorphisms and mapping

    ANIMAL GENETICS, Issue 4 2001
    A. Haegeman
    A cDNA encoding the bovine melanocortin receptor 4 (MC4R) was cloned and sequenced. Comparing human, pig and rat homologues showed a 87, 85 and 89% identity on the DNA level, respectively, and over 90% on the protein level. The bovine MC4R gene was mapped to BTU 24 by radiation hybrid mapping. Two nucleotide changes were identified by single stranded conformation polymorphism (SSCP) and sequencing. The substitutions proved to be a T to C and G (allele B) to A (allele A) resulting, respectively, in a conservative valine to alanine substitution (Val 145 Ala) and an alanine to threonine (Ala 172 Thr). Using PCR-RFLP, 13 different cattle breeds were screened for the presence of the Ala 172 Thr substitution. With the exception of one Red Pied animal, allele A could only be detected in Red Holstein animals. [source]


    Cloning of PRL and VIP cDNAs of the Java sparrow (Padda oryzivora)

    ANIMAL SCIENCE JOURNAL, Issue 2 2009
    Gen HIYAMA
    ABSTRACT Complementary DNA (cDNA) of prolactin (PRL) and vasoactive intestinal polypeptide (VIP) of the Java sparrow were cloned and sequenced. The proximal region of the PRL promoter was also identified. Java sparrow PRL was found to have 88.3, 88.3, and 89.1% sequence identity at the cDNA level to PRL of chicken, turkey, and duck, respectively. The predicted amino acid sequence had an overall similarity with a comparable region of chicken (91.4%), turkey (88.9%) and duck (92.0%) PRL. Based on the cDNA sequence and genomic structure of the chicken PRL gene, the proximal promoter was characterized. Sequence analysis of the proximal region of Java sparrow PRL promoter revealed a high degree of similarity to that of chicken, turkey and duck PRL promoters. Moreover, cDNA of prepro-VIP was also cloned and sequenced. Java sparrow prepro-VIP shows high similarity to chicken and turkey prepro-VIP. However, the region upstream of the 5, untranslated region of Java sparrow prepro-VIP did not show similarity to that of chicken. These results suggest that the mechanisms, which regulate expression of the VIP gene, may be different between precocial and altricial birds, but expression of the PRL gene may be widely conserved in avian species. [source]


    Leukocyte cDNA Analysis of NSD1 Derived from Confirmed Sotos Syndrome Patients

    ANNALS OF HUMAN GENETICS, Issue 6 2007
    M. Duno
    Summary Background: Haploinsufficiency of the NSD1 gene leads to Sotos syndrome (Sos), which is characterised by excessive growth, especially during childhood, distinct craniofacial features and variable degree of mental impairment. A wide spectrum of NSD1 mutations have been described in Sos patients, ranging from more than 100 different single nucleotide changes, to partial gene deletions, and to microdeletions of various sizes comprising the entire NSD1 locus. Objective: To investigate the NSD1 cDNA sequence in genetically confirmed Sos patients harbouring truncating and missense mutations. Method: Total RNA was isolated from a 250 ,l standard EDTA blood sample from nine genetically verified Sos patients, and subsequent reverse-transcribed into cDNA followed by PCR and direct sequencing of specific NSD1 cDNA sequences. Results: All nine mutations, including missense, nonsense and whole exon deletions, previously identified in genomic DNA, could confidently be detected in cDNA. Several NSD1 transcript splice variants were detected. Conclusion: Despite the fact that Sos is caused by haploinsufficiency, NSD1 transcripts containing nonsense and frame shift mutations can be detected in leukocyte-derived cDNA. The possibility therefore exists that certain NSD1 mutations are expressed and contribute to the phenotypic variability of Sos. NSD1 cDNA analysis is likely to enhance mutation detection in Sos patients. [source]


    Chicken gizzard filamin, retina filamin and cgABP260 are respectively, smooth muscle-, non-muscle- and pan-muscle-type isoforms: Distribution and localization in muscles

    CYTOSKELETON, Issue 4 2005
    Kazuyo Ohashi
    Abstract We determined the full cDNA sequences of chicken gizzard filamin and cgABP260 (chicken gizzard actin-binding protein 260). The primary and secondary structures predicted by these sequences were similar to those of chicken retina filamin and human filamins. Like mammals, chickens have 3 filamin isoforms. Comparison of their amino acid sequences indicated that gizzard filamin, retina filamin, and cgABP260 were the counterparts of human FLNa (filamin a), b, and c, respectively. Antibodies against the actin-binding domain (ABD) of these 3 filamin isoforms were raised in rabbits. Using immunoabsorption and affinity chromatography, we prepared the monospecific antibody against the ABD of each filamin. In immunoblotting, the antibody against the gizzard filamin ABD detected a single band in gizzard, but not in striated muscles or brain. In brain, only the antibody against the retina filamin ABD produced a strong single band. The antibody against the cgABP260 ABD detected a single peptide band in smooth, skeletal, and cardiac muscle. In immunofluorescence microscopy of muscular tissues using these antibodies, the antibody against the gizzard filamin ABD only stained smooth muscle cells, and the antibody against the retina filamin ABD strongly stained endothelial cells of blood vessels and weakly stained cells in connective tissue. The antibody against the cgABP260 ABD stained the Z-lines and myotendinous junctions of breast muscle, the Z-lines and intercalated disks of cardiac muscle, and dense plaques of smooth muscle. These findings indicate that chicken gizzard filamin, retina filamin, and cgABP260 are, respectively, smooth muscle-type, non-muscle-type, and pan-muscle-type filamin isoforms. Cell Motil. Cytoskeleton 61:214,225, 2005. © 2005 Wiley-Liss, Inc. [source]


    An automated in situ hybridization screen in the medaka to identify unknown neural genes

    DEVELOPMENTAL DYNAMICS, Issue 3 2005
    Carole Deyts
    Abstract Despite the fact that a large body of factors that play important roles in development are known, there are still large gaps in understanding the genetic pathways that govern these processes. To find previously unknown genes that are expressed during embryonic development, we optimized and performed an automated whole-mount in situ hybridization screen on medaka embryos at the end of somitogenesis. Partial cDNA sequences were compared against public databases and identified according to similarities found to other genes and gene products. Among 321 isolated genes showing specific expression in the central nervous system in at least one of five stages of development, 55.14% represented genes whose functions are already documented (in fish or other model organisms). Additionally, 16.51% were identified as conserved unknown genes or genes with unknown function. We provide new data on eight of these genes that presented a restricted expression pattern that allowed for formulating testable hypotheses on their developmental roles, and that were homologous to mammalian molecules of unknown function. Thus, gene expression screening in medaka is an efficient tool for isolating new regulators of embryonic development, and can complement genome-sequencing projects that are producing a high number of genes without ascribed functions. Developmental Dynamics 234:698,708, 2005. © 2005 Wiley-Liss, Inc. [source]


    Tissue-specific variation of heat shock protein gene expression in relation to diapause in the bumblebee Bombus terrestris

    ENTOMOLOGICAL RESEARCH, Issue 1 2008
    Back-Guen KIM
    Abstract Diapause-associated expression patterns of heat shock protein genes (hsp) were determined in the queen of the bumblebee Bombus terrestris, a pollination insect. Partial cDNA sequences of three hsp genes ,shsp, hsc70 and hsp90, were obtained, and the deduced amino acid sequences were found to be highly homologous with corresponding hsp of hymenopteran insects. Using northern hybridization, the transcript level of each gene was compared in six stages relating to diapause: pre-mating, post-mating, chilling for 1, 2 and 3 months, and post-chilling. The transcript level was also compared in four tissues of adult queens: brain, thoracic muscle, gut and ovary. The transcript levels of the three hsp genes changed at various rates in relation to diapause, and each pattern was highly tissue-specific. Overall patterns of hsc70 and hsp90 expression were similar in each tissue. The shsp level in the brain was downregulated after 1 month chilling, but its level in the ovary was upregulated during a long chilling period; levels in muscle and gut did not change in relation to diapause. The levels of both hsc70 and hsp90 in muscle were gradually upregulated in late diapause and postdiapause stages, but levels in the ovary were downregulated during the chilling period, while levels in the brain and gut did not change in relation to diapause. Our results show that the three hsp genes were differentially regulated in stage- and tissue-specific manners throughout diapause, and suggest unique physiological roles for these genes in relation to diapause in each tissue of queen bumblebees. [source]


    Clonal expansions of 6-thioguanine resistant T lymphocytes in the blood and tumor of melanoma patients,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2008
    Mark R. Albertini
    Abstract The identification of specific lymphocyte populations that mediate tumor immune responses is required for elucidating the mechanisms underlying these responses and facilitating therapeutic interventions in humans with cancer. To this end, mutant hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficient (HPRT -) T-cells were used as probes to detect T-cell clonal amplifications and trafficking in vivo in patients with advanced melanoma. Mutant T-cells from peripheral blood were obtained as clonal isolates or in mass cultures in the presence of 6-thioguanine (TG) selection and from tumor-bearing lymph nodes (LNs) or metastatic melanoma tissues by TG-selected mass cultures. Nonmutant (wild-type) cells were obtained from all sites by analogous means, but without TG selection. cDNA sequences of the T-cell receptor (TCR) beta chains (TCR-,), determined directly (clonal isolates) or following insertion into plasmids (mass cultures), were used as unambiguous biomarkers of in vivo clonality of mature T-cell clones. Clonal amplifications, identified as repetitive TCR-, V-region, complementarity determining region 3 (CDR3), and J-region gene sequences, were demonstrated at all sites studied, that is, peripheral blood, LNs, and metastatic tumors. Amplifications were significantly enriched among the mutant compared with the wild-type T-cell fractions. Importantly, T-cell trafficking was manifested by identical TCR-, cDNA sequences, including the hypervariable CDR3 motifs, being found in both blood and tissues in individual patients. The findings described herein indicate that the mutant T-cell fractions from melanoma patients are enriched for proliferating T-cells that infiltrate the tumor, making them candidates for investigations of potentially protective immunological responses. Environ. Mol. Mutagen., 2008. Published 2008 Wiley-Liss, Inc. [source]


    Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2009
    N. Hamamura
    Summary The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA -like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable to detect these genes in all geothermal systems where we have observed microbial arsenite oxidation. Consequently, the objectives of the current study were to measure arsenite-oxidation rates in geochemically diverse thermal habitats in Yellowstone National Park (YNP) ranging in pH from 2.6 to 8, and to identify corresponding 16S rRNA and aroA genotypes associated with these arsenite-oxidizing environments. Geochemical analyses, including measurement of arsenite-oxidation rates within geothermal outflow channels, were combined with 16S rRNA gene and aroA functional gene analysis using newly designed primers to capture previously undescribed aroA -like arsenite oxidase gene diversity. The majority of bacterial 16S rRNA gene sequences found in acidic (pH 2.6,3.6) Fe-oxyhydroxide microbial mats were closely related to Hydrogenobaculum spp. (members of the bacterial order Aquificales), while the predominant sequences from near-neutral (pH 6.2,8) springs were affiliated with other Aquificales including Sulfurihydrogenibium spp., Thermocrinis spp. and Hydrogenobacter spp., as well as members of the Deinococci, Thermodesulfobacteria and ,- Proteobacteria. Modified primers designed around previously characterized and newly identified aroA -like genes successfully amplified new lineages of aroA- like genes associated with members of the Aquificales across all geothermal systems examined. The expression of Aquificales aroA- like genes was also confirmed in situ, and the resultant cDNA sequences were consistent with aroA genotypes identified in the same environments. The aroA sequences identified in the current study expand the phylogenetic distribution of known Mo-pterin arsenite oxidase genes, and suggest the importance of three prominent genera of the order Aquificales in arsenite oxidation across geochemically distinct geothermal habitats ranging in pH from 2.6 to 8. [source]


    Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids

    FEBS JOURNAL, Issue 8 2002
    Irina Gerasimenko
    Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (N,-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation. [source]


    Purification, characterization, and cDNA cloning of a novel soluble saxitoxin and tetrodotoxin binding protein from plasma of the puffer fish, Fugu pardalis

    FEBS JOURNAL, Issue 22 2001
    Mari Yotsu-Yamashita
    Some species of puffer fish have been reported to possess both of tetrodotoxin and saxitoxin, which share one binding site on sodium channels. We purified a novel soluble glycoprotein that binds to these toxins from plasma of the puffer fish, Fugu pardalis, and named puffer fish saxitoxin and tetrodotoxin binding protein (PSTBP). PSTBP possessed a binding capacity of 10.6 ± 0.97 nmol·mg,1 protein and a Kd of 14.6 ± 0.33 nm for [3H]saxitoxin in equilibrium binding assays. [3H]Saxitoxin (10 nm) binding to PSTBPs was half-inhibited by the presence of tetrodotoxin and saxitoxin at 12 µm and 8.5 nm, respectively. From the results of gel filtration chromatography (200 kDa) and SDS/PAGE (104 kDa), PSTBP was suggested to consist of noncovalently linked dimers of a single subunit. PSTBP was completely deglycosylated by glycopeptidase F, producing a single band at 42 kDa. Two highly homologous cDNAs to each other coding PSTBP (PSTBP1 and PSTBP2, the predicted amino-acid identity 93%), were obtained from a cDNA library of F. pardalis liver. These proteins consisted to two tandemly repeated homologous domains. The predicted amino-acid sequences of PSTBP1 and 2 were not homologous to that of saxiphilin, a reported saxitoxin binding protein, or sodium channels, but their N-terminus sequences were homologous to that of the reported tetrodotoxin binding protein from plasma of Fugu niphobles, which has not been fully characterized. The partially homologous cDNA sequences to PSTBP1 and 2 were also found in expressed sequence tag clones of nontoxic flounders liver. Presumably, PSTBP is involved in accumulation and/or excretion of toxins in puffer fish. [source]


    Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins

    FEBS JOURNAL, Issue 14 2000
    Nicolas Moniaux
    The MUC4 mucin gene encodes a putative membrane-anchored mucin with predicted size of 930 kDa, for its 26.5-kb allele. It is composed of two regions, the 850-kDa mucin-type subunit MUC4, and the 80-kDa membrane-associated subunit MUC4,. In this study, we cloned and characterized unique MUC4 cDNA sequences that differ from the originally published sequence. Eight alternative splice events located downstream of the central large tandem repeat array generated eight new, distinct cDNAs. The deduced sequences of these MUC4 cDNAs (sv1- MUC4 to sv8- MUC4, the full length cDNA being called sv0- MUC4) provided seven distinct variants, five secreted forms and two membrane-associated forms. Furthermore, two other alternative splicing events located on both sides of the tandem repeat array created two variants, MUC4/Y and MUC4/X, both lacking the central tandem repeat. Therefore, MUC4 can be expressed in three distinct forms, one membrane-bound, one secreted, and one lacking the hallmark feature of mucin, the tandem repeat array. Although no specific function has yet been discovered for the family of proteins putatively produced from the unique MUC4 gene, we suspect that the MUC4 proteins may be implicated in the integrity and renewal of the epithelium. [source]