cDNA Clone Encoding (cdna + clone_encoding)

Distribution by Scientific Domains


Selected Abstracts


Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
Guoping Feng
Abstract A cDNA clone encoding a seven-transmembrane domain, G-protein-coupled receptor (NPFR76F, also called GPCR60), has been isolated from Drosophila melanogaster. Deletion mapping showed that the gene encoding this receptor is located on the left arm of the third chromosome at position 76F. Northern blotting and whole mount in situ hybridization have shown that this receptor is expressed in a limited number of neurons in the central and peripheral nervous systems of embryos and adults. Analysis of the deduced amino acid sequence suggests that this receptor is related to vertebrate neuropeptide Y receptors. This Drosophila receptor shows 62,66% similarity and 32,34% identity to type 2 neuropeptide Y receptors cloned from a variety of vertebrate sources. Coexpression in Xenopus oocytes of NPFR76F with the promiscuous G-protein G,16 showed that this receptor is activated by the vertebrate neuropeptide Y family to produce inward currents due to the activation of an endogenous oocyte calcium-dependent chloride current. Maximum receptor activation was achieved with short, putative Drosophila neuropeptide F peptides (Drm-sNPF-1, 2 and 2s). Neuropeptide F-like peptides in Drosophila have been implicated in a signalling system that modulates food response and social behaviour. The identification of this neuropeptide F-like receptor and its endogenous ligand by reverse pharmacology will facilitate genetic and behavioural studies of neuropeptide functions in Drosophila. [source]


Fusion of farnesyldiphosphate synthase and epi -aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum

FEBS JOURNAL, Issue 14 2002
Maria Brodelius
A clone encoding farnesyl diphosphate synthase (FPPS) was obtained by PCR from a cDNA library made from young leaves of Artemisia annua. A cDNA clone encoding the tobacco epi -aristolochene synthase (eAS) was kindly supplied by J. Chappell (University of Kentucky, Lexington, KY, USA). Two fusions were constructed, i.e. FPPS/eAS and eAS/FPPS. The stop codon of the N-terminal enzyme was removed and replaced by a short peptide (Gly-Ser-Gly) to introduce a linker between the two ORFs. These two fusions and the two single cDNA clones were separately introduced into a bacterial expression vector (pET32). Escherichia coli was transformed with the expression vectors and enzymatically active soluble proteins were obtained after induction with isopropyl thio-,- d -thiogalactoside. The recombinant enzymes were purified using immobilized metal affinity chromatography on Co2+ columns. The fusion enzymes produced epi- aristolochene from isopentenyl diphosphate through a coupled reaction. The Km values of FPPS and eAS for isopentenyl diphosphate and farnesyl diphosphate, respectively, were essentially the same for the single and fused enzymes. The bifunctional enzymes showed a more efficient conversion of isopentenyl diphosphate to epi -aristolochene than the corresponding amount of single enzymes. [source]


Cloning, sequencing, heterologous expression, and characterization of murine cytochrome P450 3a25*(Cyp3a25), a testosterone 6,-hydroxylase

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2001
Ding Dai
Abstract A full-length cDNA clone encoding a novel form of the cytochrome P450 3A subfamily (Cyp3a-25) has been isolated from a mouse liver cDNA library. The sequence contained 2010 base pairs and encoded a protein with 503 amino acids. The amino acid sequence shared greater identities with rat CYP3A18 (90%) and golden hamster CYP3A10 (81%) sequences than with known mouse sequences (Cyp3a-11, Cyp3a-13, Cyp3a-16, and Cyp3a-41 [68,70%]). CYP3A25 was expressed in the Escherichia coli PCWori+ expression vector following slight modifications of the N- and C-terminals of the cDNA. The purified CYP3A25 was recognized on an immunoblot by CYP3A1 antibody and has a molecular weight of 50 kD. CYP3A25 was catalytically active in the 6,-hydroxylation of testosterone and the N-demethylation of benzphetamine and erythromycin. It was demonstrated by RT-PCR that the CYP3A25 mRNA is present in both fetal and adult tissues, including liver, lung, intestines, kidney, and brain. Northern blotting demonstrated that expression is greatest in the liver and small intestine. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:90,99, 2001 [source]


Discovery of the hepatitis C virus

LIVER INTERNATIONAL, Issue 2009
Michael Houghton
Abstract After nearly 6 years of intensive investigations between 1982 and 1988 in my laboratory at Chiron corporation, in which numerous molecular biological methods were used to investigate the viral aetiology of parenterally transmitted non-A, non-B viral hepatitis (NANBH), a single cDNA clone (5-1-1) was isolated that was shown to be derived from a new flavi-like virus, termed the hepatitis C virus (HCV). After screening hundreds of millions of bacterial cDNA clones derived from different liver and plasma samples obtained from experimentally infected chimpanzees, a single HCV clone was eventually isolated using a novel, blind immunoscreening method in which antibodies derived from a clinically diagnosed NANBH patient were used to identify a cDNA clone encoding an immunodominant epitope within HCV nonstructural protein 4. Its viral origin was demonstrated by its specific hybridization to a large single-stranded RNA molecule of ,10 000 nucleotides found only in NANBH-infected samples that shared distant sequence identity with flaviviruses. Further, HCV clone 5-1-1 was shown to be extrachromosomal and to encode an antigen eliciting antibody seroconversion only in NANBH-infected chimpanzees and humans. Subsequent work demonstrated that HCV was the principal cause of parenterally transmitted NANBH around the world, with an estimated 170 million global carriers and that blood screening tests detecting circulating HCV antibodies and viral RNA could effectively eradicate the transmission of transfusion-associated NANBH. Key viral-encoded enzymes essential to its life cycle are now the targets of vigorous, ongoing drug development activities, and the feasibility of successful vaccination strategies has been demonstrated using the valuable chimpanzee model, without which any progress on HCV would not have been possible. My colleagues and coworkers who made essential contributions to the discovery of HCV were George Kuo, who had his own laboratory at Chiron and who provided intellectual and practical input, Dan Bradley of the Centers for Disease Control and Prevention, who provided a large supply of well-characterized chimpanzee samples and knowledge of the NANBH field, and Qui-Lim Choo, in my own laboratory, who provided many years of outstandingly dedicated and precise molecular biology expertise. [source]


Expression of a transcription factor (FsERF1) involved in ethylene signalling during the breaking of dormancy in Fagus sylvatica seeds

PHYSIOLOGIA PLANTARUM, Issue 3 2005
Jesús Angel Jiménez
By means of reverse transcriptase-polymerase chain reaction, using degenerate oligonucleotides conserved among ethylene-responsive transcription factors, we have isolated and characterized a cDNA clone encoding a protein involved in ethylene signalling during the breaking of dormancy in Fagus sylvatica L. seeds. This clone, named FsERF1, exhibits high homology to ethylene-responsive factors (ERFs) from several plant species. The expression of FsERF1 as a fusion protein in Escherichia coli confirmed that it was able to bind to the GCC box, a cis element present in the promoters of several ethylene-responsive genes, corroborating its role as a DNA-binding protein. Northern analysis showed that the transcript levels increased when dormancy was broken by ethephon (an ethylene-releasing compound), or by moist prechilling pretreatment at restricted water content, and were almost undetectable when seeds remained dormant by the addition of abscisic acid, aminooxyacetic acid (an ethylene biosynthesis inhibitor) or warm pretreatment, and when seeds were artificially dried, suggesting that FsERF1 function may be more closely related with the transition from seed dormancy to germination than with responses to drought stress mediated by ethylene. [source]


Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens

PLANT BIOTECHNOLOGY JOURNAL, Issue 5 2003
Chandrakanth Emani
Summary Mycoparasitic fungi are proving to be rich sources of antifungal genes that can be utilized to genetically engineer important crops for resistance against fungal pathogens. We have transformed cotton and tobacco plants with a cDNA clone encoding a 42 kDa endochitinase from the mycoparasitic fungus, Trichoderma virens. Plants from 82 independently transformed callus lines of cotton were regenerated and analysed for transgene expression. Several primary transformants were identified with endochitinase activities that were significantly higher than the control values. Transgene integration and expression was confirmed by Southern and Northern blot analyses, respectively. The transgenic endochitinase activities were examined in the leaves of transgenic tobacco as well as in the leaves, roots, hypocotyls and seeds of transgenic cotton. Transgenic plants with elevated endochitinase activities also showed the expected 42 kDa endochitinase band in fluorescence, gel-based assays performed with the leaf extracts in both species. Homozygous T2 plants of the high endochitinase-expressing cotton lines were tested for disease resistance against a soil-borne pathogen, Rhizoctonia solani and a foliar pathogen, Alternaria alternata. Transgenic cotton plants showed significant resistance to both pathogens. [source]


Identification and isolation of cDNA clones encoding the abundant secreted proteins in the saliva proteome of Culicoides nubeculosus

INSECT MOLECULAR BIOLOGY, Issue 3 2009
C. L. Russell
Abstract Culicoides spp. are vectors of several infectious diseases of veterinary importance and a major cause of allergy in horses and other livestock. Their saliva contains a number of proteins which enable blood feeding, enhance disease transmission and act as allergens. We report the construction of a novel cDNA library from Culicoides nubeculosus linked to the analysis of abundant salivary gland proteins by mass spectrometry. Fifty-four novel proteins sequences are described including those of the enzymes maltase, hyaluronidase and two serine proteases demonstrated to be present in Culicoides salivary glands, as well as several members of the D7 family and protease inhibitors with putative anticoagulant activity. In addition, several families of abundant proteins with unknown function were identified including some of the major candidate allergens that cause insect bite hypersensitivity in horses. [source]