| |||
cDNA Array (cdna + array)
Selected AbstractsIdentification of Differentially Expressed Genes During Anther Abortion of Taigu Genic Male Sterile Wheat by Combining Suppression Subtractive Hybridization and cDNA ArrayJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2006Qing-Shan Chang Abstract Taigu Genic Male Sterile Wheat (TGMSW; Triticum aestivum L.), a dominant genic male sterile germplasm, is of considerable value in the genetic improvement of wheat because of its stable inherence, complete male abortion, and high cross-fertilization rate. To identify specially transcribed genes in sterile anther, a suppression subtractive hybridization (SSH) library was constructed with sterile anther as the tester and fertile anther as the driver. A total of 2 304 SSH inserts amplified by polymerase chain reaction were arrayed using robotic printing. The cDNA arrays were hybridized with 32P-labeled probes prepared from the RNA of forward- and reverse-subtracted anthers. Ninety-six clones were scored as upregulated in sterile anthers compared with the corresponding fertile anthers and some clones were selected for sequencing and analysis in GenBank. Based on their putative functions, 87 non-redundant clones were classified into the following groups: (i) eight genes involved in metabolic processes; (ii) four material transportation genes; (iii) three signal transduction-associated genes; (iv) four stress response and senescence-associated protein genes; (v) seven other functional protein genes; (vi) five genes with no known function; and (vii) another 56 genes with no match to the databases. To test the hybridization efficiency, eight genes were selected and analyzed by Northern blot. The results of the present study provide a comprehensive overview of the genes and gene products involved in anther abortion in TGMSW. (Managing editor: Li-Hui Zhao) [source] Transcriptional profiling on chromosome 19p indicated frequent downregulation of ACP5 expression in hepatocellular carcinomaINTERNATIONAL JOURNAL OF CANCER, Issue 6 2005Kathy Y.-Y. Abstract Chromosomal rearrangements unraveled by spectral karyotyping (SKY) indicated frequent chromosome 19 translocations in hepatocellular carcinoma (HCC). In an effort to characterize the aberrant 19 rearrangements in HCC, we performed positional mapping by fluorescence in-situ hybridization (FISH) in 10 HCC cell lines. SKY analysis indicated structural rearrangements of chromosome 19 in 6 cell lines, 4 of which demonstrated recurring 19p translocations with different partner chromosomes. Using fluorescence-labeled BAC probes, physical mapping indicated a breakpoint cluster between 19p13.12 and 19p12. A corresponding transcriptional mapping by cDNA array on 19p suggested the differential expression of a single downregulated gene ACP5 (tartrate-resistant acid phosphatase type 5). Quantitative RT-PCR confirmed the reduced expression of ACP5 and indicated a strong correlation of its repressed expression only in cell lines that contain a 19p rearrangement (p = 0.004). We further examined the expression of ACP5 in a cohort of 82 primary tumors and 74 matching nonmalignant liver tissues. In the primary HCC examined, a reduction of ACP5 transcripts by 2 to as much as 1,000-fold was suggested in 67% of tumors (55/82 cases). When compared to adjacent nonmalignant tissues, 46% of tumors (34/74 cases) demonstrated a lower expression level (p = 0.015). On closer examination, a high significance of ACP5 repression was suggested in the cirrhotic HCC subgroup that was derived from chronic hepatitis B infected patients (55%; 30/54 cases; p = 0.001). Functional examination of ACP5 ectopic expression in HCC cells further demonstrated a significant growth inhibitory effect of ACP5 on tumor cell survival (p < 0.001). In our study, the novel finding of common ACP5 downregulation in HCC may provide basis for further investigations on the role of acid phosphatase in hepatocarcinogenesis. © 2004 Wiley-Liss, Inc. [source] BRD7, a novel bromodomain gene, inhibits G1,S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathwaysJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004Jie Zhou Bromodomain is a 110 amino acid domain. It is evolutionally conserved and is found in proteins strongly implicated in signal-dependent transcriptional regulation. BRD7 is a novel bromodomain gene and it is downexpressed in nasopharyngeal carcinoma (NPC) biopsies and cell lines; its function is poorly understood. In the present study, tet-on inducible expression system was used to investigate the role of BRD7 in cell growth and cell cycle progression. We found that ectopic expression of BRD7 in NPC cells inhibited cell growth and cell cycle progression from G1 to S. We further performed cell cycle cDNA array to screen potential transcriptional targets of BRD7 in cell cycle. Thirteen important signaling molecules, mainly implicated in ras/MEK/ERK and Rb/E2F pathways, were differentially expressed by induction of BRD7. Moreover, we observed that BRD7 could regulate the promoter activity of E2F3, one of its targets. Taken together, the present study indicated that BRD7 inhibited G1,S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways and suggested that BRD7 may present a promising candidate of NPCÔ associated tumor suppressor gene. © 2004 Wiley-Liss, Inc. [source] Expansion of the genomics research on Atlantic salmon Salmo salar L. project (GRASP) microarray toolsJOURNAL OF FISH BIOLOGY, Issue 9 2008K. R. VonSchalburg Salmonids are the most widely studied group of fish, and in the last few years, genomics technologies have begun to contribute to this rich biology. The first salmonid microarrays appeared in 2004 and since then several dozen studies have demonstrated the utility of genomic approaches. The widespread use of the genomics research on Atlantic salmon project 16 k array and greatly expanded genome resources have led to the development of an experimental 5 k oligo (70-mer) array and a 32 k cDNA microarray in the near future. In this paper, the authors examined some of the procedures used in the development of past arrays and reexamined them in light of new genomic data available. Some preliminary control experiments of the new 5 k array were investigated that examine oligo designs based on distance from the polyA tail, the effects of mismatches and cross-species hybridization specificity. Beneficial approaches are also identified in the development of the new 32 k cDNA array. [source] Expression of major vault protein gene in osteosarcoma patientsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2007Cristiane Arruda Dalla-Torre Abstract Osteosarcoma (OS) is a primary malignant tumor of bone. Despite the successful use of multiple chemotherapeutic agents in the treatment of OS, more than 30% of OS tumors remain resistant to treatment. Elucidation of cellular resistance mechanisms may lead to better treatments for cancer patients. In this study, we used the low-density expression cDNA array, GEArray Q Series Human Cancer Drug Resistance and Metabolism Gene Array to screen genes related to drug resistance in 15 OS tumors. Expression patterns of the MPV gene were validated by real time PCR on 45 OS patient tumor samples and correlated with clinical and pathological data. Major vault protein (MVP) expression was present in 24 (53%) tumor samples and absent in 21 (47%). Samples from surgery showed correlation between the expression of MVP, metastatic disease at diagnosis and event free survival (EFS). The MVP gene expression correlates with metastatic disease at diagnosis after neoadjuvant chemotherapy (p,=,0.048), and is also associated with worse EFS (p,=,0.036). These findings suggest that MVP expression is involved in one of the mechanisms of drug resistance in OS and is induced by chemotherapy. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:958,963, 2007 [source] Expression Profile During the Development of Appressoria Induced by Hydrophobic Surfaces in Magnaporthe grisea Y34JOURNAL OF PHYTOPATHOLOGY, Issue 3 2010Qingchao Jin Abstract To study the gene expression profile during appressorium developmental process of Magnaphorthe grisea strain Y34 isolated from the rich area of Asia cultivated rice resources, expressed sequence tags (ESTs) and cDNA array analysis were performed. A total of 4756 tentative unique transcripts (TUTs) were obtained from 13 057 ESTs of the 3, ends of the strain, which was approximately 25% of the total M. grisea EST sequences deposited in the GenBank database. Approximately 84% of these TUTs matched with the published draft genome sequences of strain 70-15. Southern analyses with 12 TUT probes revealed no obvious DNA polymorphism among strains 70-15, Guy11 and Y34. A cDNA array with 4108 TUTs was used to monitor gene expression patterns during appressorium development of M. grisea. Compared with ungerminated conidia, the number of up-regulated and down-regulated genes was almost consistent at any time-points of 2, 8, 20 and 30 h during appressorium development. More genes were differentially expressed during appressorium maturation (20 and 30 h) than during appressorium induction (2 h) and formation (8 h). During appressorium maturation (20,30 h), genes generally seemed to be most actively expressed. [source] Transcriptional profiling using a novel cDNA array identifies differential gene expression during porcine embryo elongationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005So Hyun Lee Abstract A novel porcine cDNA array, containing 1,015 PCR products selected for embryonic expression, was used for transcriptional profiling of conceptuses at four stages of peri-implantation development. Total conceptus RNA from small spherical, large spherical, tubular, and filamentous stages was amplified, converted to cDNA, and hybridized to membranes. Initially, normalized signal intensities obtained using cDNA from total RNA or from amplified RNA were compared. Uniform distribution of P -values associated with t -tests conducted for each gene indicated no evidence that amplification introduced bias. Analysis of data obtained by using amplified targets and the novel array identified genes differentially expressed across stages. Such genes were identified by testing for significant stage effects in gene-specific mixed models. A total of nine genes were declared differentially expressed. Six of the nine genes had P -values less than 0.001, and a false discovery rate of approximately 17% was associated with this significance threshold. Two out of six genes were significant when using the Bonferroni method to control the probability of one or more false positives. The other three genes had P -values between 0.001 and 0.01 and exhibited differences greater than twofold between stages. All four genes selected for confirmation (steroidogenic acute regulatory protein, interleukin 1 beta, transforming growth factor beta 3, and thymosin beta 10) were shown to be differentially expressed by using quantitative real time RT-PCR. Our study shows that RNA amplification is useful for transcriptional profiling with limiting porcine embryonic RNA, and that this novel targeted array can detect differential gene expression during trophoblastic elongation. Finally, our results contribute to an increased understanding of the temporal patterns of expression of known genes controlling conceptus development, as well as identify novel genes also differentially regulated during implantation. Mol. Reprod. Dev. 71: 129,139, 2005. © 2005 Wiley-Liss, Inc. [source] Molecular fingerprinting of TGFß-treated embryonic maxillary mesenchymal cellsORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 4 2003M.M. Pisano Abstract The transforming growth factor-ß (TGFß) family represents a class of signaling molecules that plays a central role in normal embryonic development, specifically in development of the craniofacial region. Members of this family are vital to development of the secondary palate where they regulate maxillary and palate mesenchymal cell proliferation and extracellular matrix synthesis. The function of this growth factor family is particularly critical in that perturbation of either process results in a cleft of the palate. While the cellular and phenotypic effects of TGFß on embryonic craniofacial tissue have been extensively cataloged, the specific genes that function as downstream mediators of TGFß in maxillary/palatal development are poorly defined. Gene expression arrays offer the ability to conduct a rapid, simultaneous assessment of hundreds to thousands of differentially expressed genes in a single study. Inasmuch as the downstream sequelae of TGFß action are only partially defined, a complementary DNA (cDNA) expression array technology (Clontech's AtlasTM Mouse cDNA Expression Arrays), was utilized to delineate a profile of differentially expressed genes from TGFß-treated primary cultures of murine embryonic maxillary mesenchymal cells. Hybridization of a membrane-based cDNA array (1178 genes) was performed with 32P-labeled cDNA probes synthesized from RNA isolated from either TGFß-treated or vehicle-treated embryonic maxillary mesenchymal cells. Resultant phosphorimages were subject to AtlasImageTM analysis in order to determine differences in gene expression between control and TGFß-treated maxillary mesenchymal cells. Of the 1178 arrayed genes, 552 (47%) demonstrated detectable levels of expression. Steady state levels of 22 genes were up-regulated, while those of 8 other genes were down-regulated, by a factor of twofold or greater in response to TGFß. Affected genes could be grouped into three general functional categories: transcription factors and general DNA-binding proteins; growth factors/signaling molecules; and extracellular matrix and related proteins. The extent of hybridization of each gene was evaluated by comparison with the abundant, constitutively expressed mRNAs: ubiquitin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ornithine decarboxylase (ODC), cytoplasmic beta-actin and 40S ribosomal protein. No detectable changes were observed in the expression levels of these genes in response to TGFß treatment. Gene expression profiling results were verified by Real-Time quantitative polymerase chain reaction. Utilization of cDNA microarray technology has enabled us to delineate a preliminary transcriptional map of TGFß responsiveness in embryonic maxillary mesenchymal cells. The profile of differentially expressed genes offers revealing insights into potential molecular regulatory mechanisms employed by TGFß in orchestrating craniofacial ontogeny. [source] Differential Chemokine and Chemokine Receptor Gene Induction by Ischemia, Alloantigen, and Gene Transfer in Cardiac GraftsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2003Dongmei Chen Transplantation of allogeneic grafts presents several challenges to the innate and adaptive immune systems including chemokine leukocyte recruitment, activation, and effector function. We defined the chemokines and receptors induced by the transplant procedure/ischemia injury, alloantigen and gene transfer vector administration in murine cardiac grafts. E1, E3 deleted AdRSV,gal was transferred into grafts at the time of transplantation, grafts were harvested after 1,14 days, and a pathway-specific cDNA array was used to evaluate the levels of 67 chemokine and chemokine receptor genes. Transplantation resulted in ischemic injury and induction of a number of similar genes in both the syngeneic and allogeneic grafts, such as CXCL1 and CXCL5, which increased dramatically on day 1 and returned rapidly to baseline in the syngeneic grafts. Alloantigen stimulated the adaptive immune response and induced the presence of more inflammatory genes within the grafts, particularly at later time points. The adenovirus vector induced a broader panel of genes, among them potent inflammatory chemokines CXCL9 and CXCL10, that are induced earlier or more strongly compared with alloantigen stimulation alone. As alloantigen and adenovirus vectors both induce similar sets of genes, targeting these molecules may not only inhibit alloimmunity, but also enhance the utility of the gene transfer vector. [source] Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis,GENES, CHROMOSOMES AND CANCER, Issue 1 2007Jens K. Habermann To identify sequential alterations of the genome, transcriptome, and proteome during colorectal cancer progression, we have analyzed tissue samples from 36 patients, including the complete mucosa-adenoma-carcinoma sequence from 8 patients. Comparative genomic hybridization (CGH) revealed patterns of stage specific, recurrent genomic imbalances. Gene expression analysis on 9K cDNA arrays identified 58 genes differentially expressed between normal mucosa and adenoma, 116 genes between adenoma and carcinoma, and 158 genes between primary carcinoma and liver metastasis (P < 0.001). Parallel analysis of our samples by CGH and expression profiling revealed a direct correlation of chromosomal copy number changes with chromosome-specific average gene expression levels. Protein expression was analyzed by two-dimensional gel electrophoresis and subsequent mass spectrometry. Although there was no direct match of differentially expressed proteins and genes, the majority of them belonged to identical pathways or networks. In conclusion, increasing genomic instability and a recurrent pattern of chromosomal imbalances as well as specific gene and protein expression changes correlate with distinct stages of colorectal cancer progression. Chromosomal aneuploidies directly affect average resident gene expression levels, thereby contributing to a massive deregulation of the cellular transcriptome. The identification of novel genes and proteins might deliver molecular targets for diagnostic and therapeutic interventions. © Wiley-Liss, Inc. [source] Earlier expression of the transcription factor HFH-11B diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injuryHEPATOLOGY, Issue 6 2001Xinhe Wang Partial hepatectomy (PH) or toxic liver injury induces the proliferation of terminally differentiated hepatic cells to regenerate the original size of the adult liver. Previous PH liver regeneration studies showed that premature transgenic expression of the Forkhead Box M1b (FoxM1b, HFH-11B) transcription factor accelerated hepatocyte entry into DNA replication (S-phase). In this study, we used carbon tetrachloride (CCl4) liver injury to induce a different type of mouse liver regeneration and show that premature hepatic HFH-11B levels also accelerate the onset of hepatocyte S-phase in this injury model. Unlike PH liver regeneration, earlier hepatocyte proliferation after CCl4 liver injury is correlated with diminished transgenic hepatic levels of p21CIP1/WAF1 at the G1/S transition of the cell cycle. Differential hybridization of cDNA arrays and RNase protection studies determined that CCl4 regenerating liver of transgenic mice displayed early stimulated expression of the S-phase promoting cyclin D1 and cyclin E and sustained levels of Cdc25a phosphatase genes. Compared with previous PH liver regeneration studies, our data suggest that premature expression of HFH-11B activates distinct S-phase promotion pathways in the CCl4 liver injury model. Although proliferating transgenic hepatocytes induced by either PH or CCl4 liver injury displayed early expression of identical M-phase cyclin genes (cyclin B1, B2, A2, and F), only CCl4 regenerating transgenic liver exhibited earlier expression of the M-phase promoting Cdc25b. These studies suggest that CCl4 injury of transgenic liver not only uses the same mechanisms as PH to mediate accelerated hepatocyte entry into mitosis, but also promotes M-phase entry by stimulating Cdc25b expression. [source] The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumorsINTERNATIONAL JOURNAL OF CANCER, Issue 6 2006Marta Mendiola Abstract The Ewing family of tumors harbors chromosomal translocations that join the N-terminal region of the EWS gene with the C-terminal region of several transcription factors of the ETS family, mainly FLI1, resulting in chimeric transcription factors that play a pivotal role in the pathogenesis of Ewing tumors. To identify downstream targets of the EWS/FLI1 fusion protein, we established 293 cells expressing constitutively either the chimeric EWS/FLI1 or wild type FLI1 proteins and used cDNA arrays to identify genes differentially regulated by EWS/FLI1. DAX1 (NR0B1), an unusual orphan nuclear receptor involved in gonadal development, sex determination and steroidogenesis, showed a consistent up-regulation by EWS/FLI1 oncoprotein, but not by wild type FLI1. Specific induction of DAX1 by EWS/FLI1 was confirmed in two independent cell systems with inducible expression of EWS/FLI1. We also analyzed the expression of DAX1 in Ewing tumors and derived cell lines, as well as in other nonrelated small round cell tumors. DAX1 was expressed in all Ewing tumor specimens analyzed, and in seven out of eight Ewing tumor cell lines, but not in any neuroblastoma or embryonal rhabdomyosarcoma. Furthermore, silencing of EWS/FLI1 by RNA interference in a Ewing tumor cell line markedly reduced the levels of DAX1 mRNA and protein, confirming that DAX1 up-regulation is dependent upon EWS/FLI1 expression. The high levels of DAX1 found in Ewing tumors and its potent transcriptional repressor activity suggest that the oncogenic effect of EWS/FLI1 may be mediated, at least in part, by the up-regulation of DAX1 expression. © 2005 Wiley-Liss, Inc. [source] Axon-Schwann cell interactions regulate the expression of fibroblast growth factor-5 (FGF-5)JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2001Marina Scarlato Abstract We screened for genes whose expression is significantly up- or downregulated during Wallerian degeneration in adult rat sciatic nerve with cDNA arrays. Fibroblast growth factor-5 (FGF-5) mRNA seemed to be induced. This was confirmed by northern blotting and in situ hybridization, as well as Western blotting for FGF-5 in axotomized nerve. Axon-Schwann cell interactions decreased the steady-state level of FGF-5 mRNA in regenerating sciatic nerves, and forskolin diminished its expression in cultured Schwann cells. We conclude that denervated Schwann cells synthesize FGF-5, which is a secreted, neuronotrophic member of the FGF family. J. Neurosci. Res. 66:16,22, 2001. © 2001 Wiley-Liss, Inc. [source] cDNA-arrays and real-time quantitative PCR techniques in the investigation of chronic achilles tendinosisJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2003Håkan Alfredson The aetiology and pathogenesis of chronic painful Achilles tendinosis are unknown. This investigation aimed to use cDNA arrays and real-time quantitative polymerase chain reaction (real-time PCR) technique to study tendinosis and control tissue samples. Five patients (females mean age 57.1 ± 4.3 (years ±SD)) with chronic painful Achilles tendinosis were included. From all patients, one biopsy was taken from the area with tendinosis and one from a clinically normal area (control) of the tendon. The tissue samples were immediately immersed in RNAlater and frozen at ,80°C until RNA extraction. Portions of pooled RNA from control and tendinosis sites, respectively, were transcribed to cDNA, radioactively labelled (32P), hybridized to cDNA expression arrays, and exposed to phosphoimager screens over night. Expressions of specific genes, shown to be regulated in the cDNA array analysis, were analyzed in the individual samples using real-time PCR. cDNA arrays showed that gene expressions for matrix-metalloproteinase-2 (MMP-2), fibronectin subunit B (FNRB), vascular endothelial growth factor (VEGF), and mitogen-activated protein kinase p38 (MAPKp38) were up-regulated, while matrix-metalloproteinase-3 (MMP-3) and decorin were down-regulated, in tendinosis tissue compared with control tissue. Using real-time PCR, , and , patients showed up-regulation of MMP-2 and FNRB mRNA, respectively. For decorin, VEGF, and MAPKp38, real-time PCR revealed a great variability among patients. Interestingly, the mRNAs for several cytokines and cytokine receptors were not regulated, indicating the absence of an inflammatory process in chronic painful Achilles tendinosis. In conclusion, cDNA-arrays and real-time PCR can be used to study differences in gene expression levels between tendinosis and control tendon tissue. © 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Gene expression changes in human cells after exposure to mobile phone microwavesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 17 2006Daniel Remondini Abstract Possible biological effects of mobile phone microwaves were investigated in,vitro. In this study, which was part of the 5FP EU project REFLEX (Risk Evaluation of Potential Environmental Hazards From Low-Energy Electromagnetic Field Exposure Using Sensitive in,vitro Methods), six human cell types, immortalized cell lines and primary cells, were exposed to 900 and 1800,MHz. RNA was isolated from exposed and sham-exposed cells and labeled for transcriptome analysis on whole-genome cDNA arrays. The results were evaluated statistically using bioinformatics techniques and examined for biological relevance with the help of different databases. NB69 neuroblastoma cells, T,lymphocytes, and CHME5 microglial cells did not show significant changes in gene expression. In EA.hy926 endothelial cells, U937,lymphoblastoma cells, and HL-60 leukemia cells we found between 12 and 34,up- or down-regulated genes. Analysis of the affected gene families does not point towards a stress response. However, following microwave exposure, some but not all human cells might react with an increase in expression of genes encoding ribosomal proteins and therefore up-regulating the cellular metabolism. [source] Targeted Gene Expression Analysis in Hemimegalencephaly: Activation of ,-Catenin SignalingBRAIN PATHOLOGY, Issue 3 2005Jia Yu MD Hemimegalencephaly (HMEG) is a developmental brain malformation characterized by unilateral hemispheric enlargement, cytoarchitectural abnormalities, and an association with epilepsy. To define the developmental pathogenesis of HMEG, the expression of 200 cell signaling, growth, angiogenic, and transcription factor genes was assayed in HMEG samples (n = 8) with targeted cDNA arrays. Differential expression of 31 mRNAs across the 4 gene families was identified in HMEG compared with control cortex. Increases in growth and transcription factor genes included JNK-1, cyclic AMP response element binding protein (CREB), and tuberin mRNAs and decreases included insulin-like growth factor-1 (IGF-1), transforming growth factor ,-3 (TGF-,3), and NFkB mRNAs. Increased expression of cyclin D1, c-myc, and WISP-1 mRNAs in HMEG suggested activation of the Wnt-1/,-catenin cascade. Western analysis demonstrated increased levels of non-phosphorylated ,-catenin, which transcriptionally activates cyclin D1 and c-myc genes, but reduced levels of Ser33/Ser37/Thr41 phospho-,-catenin, which is essential for ,-catenin-inactivation, in HMEG. Altered expression of 31 mRNAs from 4 gene families in human HMEG may lead to aberrant cell growth and hemispheric enlargement during brain development. Enhanced cyclin D1 and c-myc transcription likely reflects increased transcriptionally active ,-catenin due to decreased Ser33/Ser37/Thr41 phospho-,-catenin and suggests activation of the Wnt-1/,-catenin cascade in HMEG. [source] |