CD86

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by CD86

  • cd86 expression

  • Selected Abstracts


    MAPK3 deficiency drives autoimmunity via DC arming

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010
    Ivo Bendix
    Abstract DC are professional APC that instruct T cells during the inflammatory course of EAE. We have previously shown that MAPK3 (Erk1) is important for the induction of T-cell anergy. Our goal was to determine the influence of MAPK3 on the capacity of DC to arm T-cell responses in autoimmunity. We report that DC from Mapk3,/, mice have a significantly higher membrane expression of CD86 and MHC-II and , when loaded with the myelin oligodendrocyte glycoprotein , show a superior capacity to prime naïve T cells towards an inflammatory phenotype than Mapk3+/+ DC. Nonetheless and as previously described, Mapk3,/, mice were only slightly but not significantly more susceptible to myelin oligodendrocyte glycoprotein-induced EAE than WT littermate mice. However, Mapk3+/+ mice engrafted with Mapk3,/, BM (KO,WT) developed a severe form of EAE, in direct contrast to WT,KO mice, which were even less sick than control WT,WT mice. An infiltration of DC and accumulation of Th17 cells was also observed in the CNS of KO,WT mice. Therefore, triggering of MAPK3 in the periphery might be a therapeutic option for the treatment of neuroinflammation since absence of this kinase in the immune system leads to severe EAE. [source]


    DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2008
    Tetsuya Tanaka
    Abstract DiC14-amidine cationic liposomes were recently shown to promote Th1 responses when mixed with allergen. To further define the mode of action of diC14-amidine as potential vaccine adjuvant, we characterized its effects on mouse and human myeloid dendritic cells (DC). First, we observed that, as compared with two other cationic liposomes, only diC14-amidine liposomes induced the production of IL-12p40 and TNF-, by mouse bone marrow-derived DC. DiC14-amidine liposomes also activated human DC, as shown by synthesis of IL-12p40 and TNF-,, accumulation of IL-6, IFN-, and CXCL10 mRNA, and up-regulation of membrane expression of CD80 and CD86. DC stimulation by diC14-amidine liposomes was associated with activation of NF-,B, ERK1/2, JNK and p38 MAP kinases. Finally, we demonstrated in mouse and human cells that diC14-amidine liposomes use Toll-like receptor 4 to elicit both MyD88-dependent and Toll/IL-1R-containing adaptor inducing interferon IFN-, (TRIF)-dependent responses. Supporting Information for this article is available at www.wiley-vch.de/contents/jc_2040/2008/37998_s.pdf [source]


    Dendritic cells derived from TBP-2-deficient mice are defective in inducing T cell responses

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2008
    Aoi Son
    Abstract Thioredoxin-binding protein-2 (TBP-2), also known as vitamin,D3-up-regulated protein,1 (VDUP1), was identified as an endogenous molecule interacting with thioredoxin (TRX). Here, we show that dendritic cells (DC) derived from TBP-2-deficient mice are defective in the function of T cell activation. To compare TBP-2,/, DC function with wild-type (WT) DC, we stimulated DC with lipopolysaccharide (LPS). Although TBP-2,/, DC and WT DC expressed comparable levels of MHC class,II and costimulatory molecules such as CD40, CD80 and CD86, the IL-12p40, IL-12p70 and IL-6 productions of TBP-2,/, DC were attenuated. In a mixed leukocyte reaction (MLR), the concentrations of IL-2, IFN-,, IL-4 and IL-10 in the culture supernatant of MLR with TBP-2,/, DC were significantly lower than those in the cultures with WT DC. In MLR also, as with LPS stimulation, IL-12p40 and IL-12p70 production from TBP-2,/, DC was less than that from WT DC. Proliferation of T cells cultured with TBP-2,/, DC was poorer than that with WT DC. Invivo delayed-type hypersensitivity responses in TBP-2,/, mice immunized with ovalbumin were significantly reduced compared to WT mice. These results indicate that TBP-2 plays a crucial role in DC to induce T cell responses. [source]


    Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcR,

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2008
    Ching-Liang Chu Dr.
    Abstract The inhibitory effect of DAP12 on macrophages has been revealed by examining myeloid cells from DAP12-deficient mice. In this report, we demonstrate that both DAP12 and the Fc,RI,-chain (FcR,) are required for negative regulation of TLR responses in bone marrow-derived dendritic cells (DC). Loss of both DAP12 and FcR, enhanced the pro-inflammatory cytokine production and maturation of DC after TLR stimulation, resulting in a greater percentage of DC that produced IL-12 p40, TNF, and IL-6, and expressed high levels of MHC class II, CD80, and CD86. Whereas DC lacking only DAP12 showed some increased TLR responses, those lacking only FcR, had a greater enhancement of maturation and cytokine production, though to a lesser extent than DC lacking both DAP12 and FcR,. Additionally, antigen-specific T cell proliferation was enhanced by DAP12,/,FcR,,/, DC relative to wild-type DC after maturation. Similar to DAP12,/,FcR,,/, DC, Syk-deficient DC also had increased inflammatory cytokine production, maturation, and antigen presentation. These results confirm the inhibitory effect of immunoreceptor tyrosine-based activation motif (ITAM) signaling in myeloid cells and show that DC and macrophages differ in their dependence on the ITAM-containing adapters DAP12 and FcR, for negative regulation of TLR signaling. [source]


    Impairment of dendritic cell function by excretory-secretory products: A potential mechanism for nematode-induced immunosuppression

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2007
    Mariela Segura
    Abstract To determine whether helminth-derived products modulate dendritic cell (DC) function, we investigated the effects of excretory-secretory products (ES) and adult worm homogenate (AWH) derived from the gastrointestinal nematode Heligmosomoides polygyrus (Hp) on murine bone marrow-derived DC (BMDC). Compared to the TLR9 ligand CpG, Hp-derived products alone failed to induce DC activation. ES, but not AWH, inhibited BMDC cytokine and chemokine production and co-stimulatory molecule expression (CD40, CD86 and MHC class,II) induced by TLR ligation. TLR ligand-independent, PMA-induced DC activation was unaffected by ES. Recipients of ES-treated BMDC pulsed with OVA had suppressed Ab responses in vivo, irrespective of the Th1 or Th2 isotype affiliation, compared to recipients of control OVA-pulsed BMDC. Importantly, suppression occurred even in the presence of the potent type,1 adjuvant CpG. In contrast to untreated OVA-pulsed BMDC, ES-treated BMDC pulsed with OVA had reduced co-stimulatory molecule and cytokine expression. CD4+CD25+Foxp3, T cells, which secreted high IL-10 levels, were generated in co-cultures of OT-II OVA-specific TCR-transgenic CD4+ T cells and ES-treated BMDC. These IL-10-secreting T cells suppressed effector CD4+ T cell proliferation and IFN-, production, the latter effect mediated by an IL-10-dependent mechanism. Together, these results demonstrate that nematode ES impaired DC function and suppressed both Th1 and Th2 adaptive immune responses possibly by inducing regulatory T cells. [source]


    Toll-like receptor engagement stimulates anti-snRNP autoreactive B cells for activation

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2006
    Chuanlin Ding
    Abstract Autoreactive B cells are the source of pathogenic autoantibodies (autoAb) in systemic lupus erythematosus (SLE). Previous studies have demonstrated that anti-small nuclear ribonucleoprotein particles (snRNP) B cells from normal background mice tolerize T cells in the periphery and do not secrete autoAb. In this study, we examined whether these anti-snRNP B cells can be activated for autoAb production by the engagement of Toll-like receptors (TLR). Anti-snRNP B cells proliferated vigorously and secreted abundant anti-snRNP autoAb upon exposure to CpG or polyriboinosinic polyribocytidylic acid [poly,(I:C)] in vitro. In addition, the costimulatory molecules CD80 and CD86 were up-regulated. While both anti-snRNP B cells and wild-type B cells produced similar levels of IL-6 and IL-10, anti-snRNP B cells secreted predominately IFN-, in response to CpG or poly,(I:C) stimulation. Furthermore, we showed that in vivo engagement of TLR stimulated immature anti-snRNP B cells to further differentiate and produce autoAb and form germinal centers. The activated anti-snRNP B cells became expanded and migrated into the T-B cell interface. Moreover, TLR engagement directly or indirectly activated autoreactive B cells via a CD4 T cell-independent manner. These results provide in vitro and in vivo evidence that BCR/TLR co-engagement promotes the activation of anti-snRNP B cells for autoAb production. [source]


    Impaired maturation and function of dendritic cells by mycobacteria through IL-1,

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2006
    Masahiko Makino Dr.
    Abstract Dendritic cells (DC) are pivotal for initiation and regulation of innate and adaptive immune responses evoked by vaccination and natural infection. After infection, mycobacterial pathogens first encounter monocytes, which produce pro-inflammatory cytokines, including IL-1,, TNF-, and IL-6. The role of these cytokines in DC maturation remains incompletely understood. Here, we show that maturation of DC from monocytes was impaired by pretreatment of monocytes with low doses of IL-1,. Under these conditions, Mycobacterium leprae -infected DC failed to stimulate antigen-specific T cell responses. Expression of CD86 and CD83 and production of IL-12 in response to lipopolysaccharide and peptidoglycan were diminished. In contrast, these DC functions were not impaired by pretreatment with TNF-,, IL-6 or IL-10. When monocytes were infected with M. bovis Bacillus Calmette-Guérin, and subsequently differentiated to DC, the activity of these DC was suppressed as well. Thus, IL-1, acts at early stages of differentiation of DC and impairs biological functions of DC at later stages. Therefore, production of IL-1, by mycobacteria-infected antigen-presenting cells counteracts effective stimulation of innate and adaptive immune responses. [source]


    Modulation of dendritic cell phenotype and functionin an in vitro model of the intestinal epithelium

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2006
    Matt Butler
    Abstract A network of dendritic cells (DC) can be detected in close proximity to the epithelial cells overlying Peyer's patches in the gut. Intestinal DC show distinct phenotypes as compared to DC from the systemic lymph nodes (relatively low MHC and costimulatory molecules and high IL-10 and TGF,) and may play a role in maintaining tolerance to enteric antigens. We show that a similar phenotype is induced in the presence of a polarised epithelial cell monolayer in vitro. Monocyte-derived DC were co-cultured with Caco-2 intestinal epithelial monolayers for 24,h. Co-culture resulted in DC with reduced expression of MHC class,II, CD86, and CD80, and poor T,cell stimulatory capacity. Cytokine profiles showed reduced levels of inflammatory cytokine production, and co-cultured DC were less sensitive to stimulation via Toll-like receptors (TLR2, 4, and 6) as a result of increased levels of autocrine TGF, production. However, phenotypic changes in co-cultured DC could not be blocked by removal of apoptotic cells or addition of anti-TGF, antibodies, suggesting that other soluble factors are involved in DC modulation. Thus, polarised epithelial cell monolayers create a ,tolerogenic' environment which modulates the activity of DC. These results highlight the regulatory importance of the epithelial microenvironment at mucosal surfaces. [source]


    Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2005
    Kristin Hochweller
    Abstract Steady-state dendritic cells (DC) present peptide-MHC complexes to T cells in a tolerogenic manner, presumably because of deficient costimulation. However, it is clear that the path to tolerance involves initial T cell activation, suggesting that the deficit may lie in late-acting costimulatory molecules. With this in mind we have investigated the kinetics of expression of several costimulatory pairs on DC and OVA-reactive T cells after i.v. injection of mice with peptide and LPS (immunity), or peptide alone (tolerance). We find that T cells up-regulate CD154, OX40, RANKL and PD-1 whether they are destined for tolerance or immunity, although there are some differences in the levels and length of expression. In contrast, when analyzing DC, we found that up-regulation of CD80, CD86, CD40, RANK and PDL-1 occurred only when peptide was co-administered with LPS. These data give a picture of the T cell looking for costimulatory cues that are not forthcoming when pMHC is presented by steady-state DC, leading to tolerance. However, we did see a strong and rapid up-regulation of RANKL on T cells that occurred specifically when peptide was given in the absence of LPS, suggesting a possible positive signal influencing the decision between tolerance and immunity. [source]


    The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2004
    Claudia Link
    Abstract A 2-kDa synthetic derivative of the macrophage-activating lipopeptide (MALP-2) from Mycoplasma fermentans is a potent inducer of monocytes/macrophages and improves the immunogenicity of antigens co-administered by systemic and mucosal routes. Dendritic cells (DC) are the most potent antigen-presenting cells, which are able to prime naive T cells in vivo. To elucidate the underlying mechanisms of MALP-2 adjuvanticity, we analyzed its activity on bone marrow-derived murine DC. In vitro stimulation of immature murine DC with MALP-2 resulted in the induction of maturation with up-regulated expression of MHC class II, costimulatory (CD80, CD86) and adhesion (CD40, CD54) molecules. MALP-2 also enhances the secretion of cytokines (IL-1,, IL-6 and IL-12), and increases DC stimulatory activity on naive and antigen-specific T cells. Further studies demonstrated that MALP-2 treatment of DC results in a dose-dependent shift from the protein pattern of proteasomes to immunoproteasomes (up-regulation of LMP2, LMP7 and MECL1), which correlates with an increased proteolytic activity. Thus, the adjuvanticity of MALP-2 can be mediated, at least in part, by the stimulation of DC maturation, which in turn leads to an improved antigen presentation. Therefore, MALP-2 is a promising molecule for the development of immune therapeutic or prophylactic interventions. [source]


    TNF-, induces the generation of Langerin/(CD207)+ immature Langerhans-type dendritic cells from both CD14,CD1a, and CD14+CD1a, precursors derived from CD34+ cord blood cells

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2003
    Jean-François Arrighi
    Abstract CD34+ cell-derived hematopoietic precursors amplified with FLT3-ligand, thrombopoietin and stem cell factor became, after a 6-day induction with GM-CSF, IL-4 and TGF-,1, HLA-DR+, CD1a+, CD83,, CD86,, CD80, cells. A fraction of them expressed Langerin, Lag, and E-cadherin, resembling epidermal Langerhans cells (LC). TNF-, addedfor the last 3,days only marginally induced CD83 expression, but strikingly increased the proportion of immature Langerin+CD83, LC. Langerin+CD83+ and Langerin+CD83, cells were functionally distinct, the former internalizing less efficiently Langerin than the latter. Both CD1a,CD14, and CD1a,CD14+ cells sorted from FLT3-ligand, thrombopoietin and stem cell factor cultures responded to TNF-, by an increase of Langerin+ cells. Thus, TNF-, rescued LC precursors irrespective of their commitment to the monocytic lineage. When added to GM-CSF, IL-4 and TGF,,1 containing-cultures, LPS or IL-1, also induced significant numbers of Langerin+CD83, immature cells displaying a low allostimulatory activity, while CD40-ligand largely promoted highly allostimulatory Langerin,CD83+ cells. Altogether, these data show that in contrast to CD40-ligand, which induced LC maturation even in presence of TGF-,1, nonspecific proinflammatory factors such as TNF-,, IL-1, or LPS, essentially induced immature LC generation, and little cell activation in the presence of TGF-,1. [source]


    Identification of novel genes regulated by ,-melanocyte-stimulating hormone in murine bone marrow-derived dendritic cells

    EXPERIMENTAL DERMATOLOGY, Issue 9 2004
    T. Brzoska
    Many strains of evidence indicate that ,-melanocyte-stimulating hormone (,-MSH) elicits its immunomodulatory activity via binding to melanocortin receptors (MC-Rs) expressed on monocytes and dendritic cells. In order to identify novel target genes regulated by ,-MSH in these cells, we prepared bone marrow-derived dendritic cell precursors from BALB/c mice and treated them with GM-CSF and IL-4 for 6 days. The MC-R profile on these immature dendritic cells was first determined by quantitative RT-PCR. Both transcripts for MC-1R and MC-5R were detected in these cells. Cells were subsequently stimulated with dinitrobenzene sulfonic acid (DNBS), ,-MSH or both substances for 2 or 16 h. After RNA preparation, cDNA synthesis and in vitro transcripton hybridization of biotinylated cRNA samples was performed on MG U74A Affymetrix gene chips. Data evaluation, cleansing, extraction and analysis of the more than 12 000 cloned genes and expressed sequence tags were performed using the GENE DATA ANALYST vs. 1 Expressionist software. Filter criteria included a minimum threshold of 100, normalization by the logarithmic mean and a quality setting of P < 0.04. Changes with a change factor of >2 were regarded as significant. As expected, stimulation with DNBS resulted in induction or upregulation of genes encoding proinflammatory cytokines, growth factors, signal transduction intermediates and transcription factors. Treatment with ,-MSH blocked the DNBS-driven upregulation of several known genes such as IL-1 or CD86. On the other hand, ,-MSH modulated the expression of several novel genes implicated in immunomodulation, e.g. IL-1, converting enzyme, IFN-, receptor, FK506-binding proteins or several neuropeptides and their receptors. These data indicate novel molecular targets by which ,-MSH exerts its immunomodulatory activities in immunocompetent cells. [source]


    Solar-simulating irradiation of the skin of human subjects in vivo produces Langerhans cell responses distinct from irradiation ex vivo and in vitro

    EXPERIMENTAL DERMATOLOGY, Issue 4 2000
    J. K. Laihia
    Abstract: It has been postulated that Langerhans cells (LC) provide tolerogenic signals in the local impairment of cutaneous immune functions and antigen-specific tolerance induced by UV radiation. Studies in vitro and ex vivo have indicated that UV radiation may down-regulate the expression of costimulatory molecules on LC, leading to reduced antigen-presenting function. In contrast, we recently observed an up-regulatory stage in the number of human epidermal LC with induced expression of B7 costimulatory molecules 12,24 h after solar-simulating UV radiation (SSR) in vivo. To examine the apparent discrepancy between the observed human LC responses in vitro, ex vivo and in vivo, we compared the three protocols in a parallel fashion. The intact skin as well as skin explants and epidermal cell suspensions from the same individuals were irradiated with a single erythematogenic dose of SSR. The expression of cell surface markers in the epidermal cells was analysed with flow cytometry 24 h later. The number of CD1a+/HLA-DR+ LC increased post-SSR in vivo by a factor of 2.8±0.4, whereas in irradiated skin explants ex vivo or in cell suspensions in vitro, reduced numbers were seen. HLA-DR expression intensities were found to have increased on DR+ and CD1a+/DR+ cells in vivo. Similarly, SSR induced B7-2 (CD86) expression in CD1a+ cells significantly in vivo (P=0.031) but reduced the expression ex vivo or in vitro. We conclude that the early up-regulatory stage of human LC number and membrane markers, recorded at 24 h after a single exposure to SSR, is exclusively an in vivo phenomenon. [source]


    Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype

    GLIA, Issue 3 2008
    Denise van Rossum
    Abstract Macrophages are key effectors in demyelinating diseases of the central and peripheral nervous system by phagocytosing myelin and releasing immunoregulatory mediators. Here, we report on a distinct, a priori anti-inflammatory reaction of macrophages phagocytosing myelin upon contact with damaged nerve tissue. Macrophages rapidly invaded peripheral (sciatic) and central (optic) nerve tissues in vitro, readily incorporated myelin and expressed high levels of phagocytosis-associated molecules (e.g., Fc and scavenger receptors). In contrast, factors involved in antigen presentation (MHC class-II, CD80, CD86) revealed only a restricted expression. In parallel, a highly ordered appearance of cytokines and chemokines was detected. IL-10, IL-6, CCL22, and CXCL1 were immediately but transiently induced, whereas CCL2, CCL11, and TGF, revealed more persisting levels. Such a profile would attract neutrophils, monocytes/macrophages, and Th2 cells as well as bias for a Th2-supporting environment. Importantly, proinflammatory/Th1-supporting factors, such as TNF,, IL-12p70, CCL3, and CCL5, were not induced. Still the simultaneous presence of TGF, and IL-6 could assist Th17 development, further depending on yet not present IL-23. The release pattern was clearly distinct from reactive phenotypes induced in isolated macrophages and microglia upon treatment with IL-4, IL-13, bacterial lipopolysaccharide, IFN,, or purified myelin. Nerve-exposed macrophages thus commit to a unique functional orientation. © 2007 Wiley-Liss, Inc. [source]


    The effects of STI571 on antigen presentation of dendritic cells generated from patients with chronic myelogenous leukemia

    HEMATOLOGICAL ONCOLOGY, Issue 2 2003
    Naoko Sato
    Abstract Chronic myelogenous leukemia is caused by the acquisition of the reciprocal (9;22)(q34;q11) chromosomal translocation in hematopoietic stem cells. The fusion protein showed higher and aberrant tyrosine kinase activity. The inhibition of the tyrosine kinase activity of the protein represents a specific therapeutic strategy for bcr/abl-expressing leukemias. STI571 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the Abl protein tyrosine kinase. In this study, we evaluated the effects of STI571 on antigen presentation of dendritic cells generated from the patients with CML. The data showed that by the addition of STI571 the dendritic cells derived from CML clone showed an increased expression of CD1a, CD83, CD80 and CD86 by flow cytometry analysis and showed more intense abilities of allogeneic antigen presentation by mixed leukocyte culture, compared with the control cells without STI571. Our results suggested that STI571 not only has a direct cytotoxic effect on bcr-abl gene rearranged cells but also an indirect effect associated with increased anti-leukemic immunological function due to an intensified antigen presentation. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Enhanced expression of B7-1, B7-2, and intercellular adhesion molecule 1 in sinusoidal endothelial cells by warm ischemia/reperfusion injury in rat liver

    HEPATOLOGY, Issue 4 2001
    Naosuke Kojima
    To elucidate a role of costimulatory molecule and cell adhesion molecule in hepatic ischemia/reperfusion injury, we examined an alteration in B7-1 (CD80), B7-2 (CD86), and intercellular adhesion molecule 1 (ICAM-1; CD54) expression in the rat liver after warm ischemia/reperfusion injury. To induce hepatic warm ischemia in a rat model, both portal vein and hepatic artery entering the left-lateral and median lobes were occluded by clamping for 30 minutes or 60 minutes, and then reperfused for 24 hours. B7-1, B7-2, and ICAM-1 expressions in the liver were analyzed by immunofluorescence staining and real-time reverse transcription polymerase chain reaction (RT-PCR). Although B7-1 and B7-2 expressions were at very low levels in the liver tissues from normal or sham-operated control rats, both B7-1 and B7-2 expressions were enhanced at protein and messenger RNA (mRNA) levels in the affected, left lobes after warm ischemia/reperfusion. ICAM-1 protein and mRNA were constitutively expressed in the liver of normal and sham-operated control rats, and further up-regulated after warm ischemia/reperfusion. Localization of increased B7-1, B7-2, and ICAM-1 proteins, as well as von Willebrand factor as a marker protein for endothelial cells, was confined by immunofluorescence staining to sinusoidal endothelial cells in hepatic lobules. Data from quantitative real-time RT-PCR analysis revealed that B7-1 and B7-2 mRNA levels were elevated in hepatic lobes after warm ischemia/reperfusion (5.13- and 52.9-fold increase, respectively), whereas ICAM-1 mRNA expression was rather constitutive but further enhanced by warm ischemia/reperfusion (4.24-fold increase). These results suggest that hepatic sinusoidal endothelial cells play a pivotal role as antigen-presenting cells by expressing B7-1 and B7-2 in warm hepatic ischemia/reperfusion injury, and that B7-1 and/or B7-2 might be the primary target to prevent early rejection and inflammatory reactions after hepatic ischemia/reperfusion injury associated with liver transplantation. [source]


    Local control of the immune response in the liver

    IMMUNOLOGICAL REVIEWS, Issue 1 2000
    Percy A. Knolle
    Summary: The physiological function of the liver , such as removal of pathogens and antigens from the blood, protein synthesis and metabolism , requires an immune response that is adapted to these tasks and is locally regulated. Pathogenic microorganisms must be efficiently eliminated while the large number of antigens derived from the gastrointestinal tract must be tolerized. From experimental observations it is evident that the liver favours the induction of tolerance rather than the induction of immunity. The liver probably not only is involved in transplantation tolerance but contributes as well to tolerance to orally ingested antigens (entering the liver with portal-venous blood) and to containment of systemic immune responses (antigen from the systemic circulation entering the liver with arterial blood). This review summarizes the experimental data that shed light on the molecular mechanisms and the cell populations of the liver involved in local immune regulation in the liver. Although hepatocytes constitute the major cell population of the liver, direct interaction of hepatocytes with leukocytes in the blood is unlikely. Sinusoidal endothelial cells, which line the hepatic sinusoids and separate hepatocytes from leukocytes in the sinusoidal lumen, and Kupffer cells, the resident macrophage population of the liver, can directly interact with passenger leukocytes. In the liver, clearance of antigen from the blood occurs mainly by sinusoidal endothelial cells through very efficient receptor-mediated endocytosis. Liver sinusoidal endothelial cells constitutively express all molecules necessary for antigen presentation (CD54, CD80, CD86, MHC class I and class II and CD40) and can function as antigen-presenting cells for CD4+ and CD8+ T cells. Thus, these cells probably contribute to hepatic immune surveillance by activation of effector T cells. Antigen-specific T-cell activation is influenced by the local microenvironment. This microenvironment is characterized by the physiological presence of bacterial constituents such as endotoxin and by the local release of immunosuppressive mediators such as interleukin-10, prostaglandin E2 and transforming growth factor-b. Different hepatic cell populations may contribute in different ways to tolerance induction in the liver. In vitro experiments revealed that naive T cells are activated by resident sinusoidal endothelial cells but do not differentiate into effector T cells. These T cells show a cytokine profile and a functional phenotype that is compatible with the induction of tolerance. Besides sinusoidal endothelial cells, other cell populations of the liver, such as dendritic cells, Kupffer cells and perhaps also hepatocytes, may contribute to tolerance induction by deletion of T cells through induction of apoptosis. [source]


    Differential regulation of SOCS-1 signalling in B and T lymphocytes by hepatitis C virus core protein

    IMMUNOLOGY, Issue 2 2008
    Zhi Qiang Yao
    Summary Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity, autoimmune phenomena and lymphomagenesis, supporting a role for lymphocyte dysregulation during persistent viral infection. We have shown that HCV core protein inhibits T-cell functions through interaction with a complement receptor, gC1qR. Here, we further report that B cells also express gC1qR that can be bound by HCV core protein. Importantly, using flow cytometry, we demonstrated differential regulation of B and T lymphocytes by the HCV core,gC1qR interaction, with down-regulation of CD69 activation in T cells but up-regulation of CD69 activation and cell proliferation in B cells. HCV core treatment led to decreased interferon-, production in CD8+ T cells but to increased immunoglobulin M and immunoglobulin G production as well as cell surface expression of costimulatory and chemokine receptors, including CD86 (B7-2), CD154 (CD40L) and CD195 (CCR5), in CD20+ B cells. Finally, we showed down-regulation of suppressor of cytokine signalling-1 (SOCS-1) using real-time reverse transcription,polymerase chain reaction, accompanied by up-regulation of signal transducer and activator of transcription-1 (STAT1) phosphorylation in B cells in response to HCV core protein, with the opposite pattern observed in HCV core-treated T cells. This study demonstrates differential regulation of B and T lymphocytes by HCV core and supports a mechanism by which lymphocyte dysregulation occurs in the course of persistent HCV infection. [source]


    The modulatory effects of lipopolysaccharide-stimulated B cells on differential T-cell polarization

    IMMUNOLOGY, Issue 2 2008
    Hui Xu
    Summary Lipopolysaccharide (LPS) is a major component of environmental microbial products. Studies have defined the LPS dose as a critical determining factor in driving differential T-cell polarization but the direct effects of LPS on individual antigen-presenting cells is unknown. Here, we investigated the effects of LPS doses on naive B cells and the subsequent modulatory effects of these LPS-activated B cells on T-cell polarization. The LPS was able to induce a proliferative response starting at a dose of 100 ng/ml and was capable of enhancing antigen internalization at a dose of 1 ,g/ml in naive B cells. Following LPS stimulation, up-regulation of the surface markers CD40, CD86, I-Ad, immunoglobulin M, CD54 and interleukin-10 production, accompanied by down-regulation of CD5 and CD184 (CXCR4) were observed in a LPS dose-dependent manner. Low doses (< 10 ng/ml) of LPS-activated B cells drove T helper type 2 polarization whereas high doses (> 0·1 ,g/ml) of LPS-activated B cells resulted in T regulatory type 1 cell polarization. In conclusion, LPS-activated B cells acquire differential modulatory effects on T-cell polarization. Such modulatory effects of B cells are dependent on the stimulation with LPS in a dose-dependent manner. These observations may provide one of the mechanistic explanations for the influence of environmental microbes on the development of allergic diseases. [source]


    Apoptotic cells induce dendritic cell-mediated suppression via interferon-,-induced IDO

    IMMUNOLOGY, Issue 1 2008
    Charlotte A. Williams
    Summary Dendritic cells (DC) are sensitive to their local environment and are affected by proximal cell death. This study investigated the modulatory effect of cell death on DC function. Monocyte-derived DC exposed to apoptotic Jurkat or primary T cells failed to induce phenotypic maturation of the DC and were unable to support CD4+ allogeneic T-cell proliferation compared with DC exposed to lipopolysaccharide (LPS) or necrotic cells. Apoptotic cells coincubated with LPS- or necrotic cell-induced mature DC significantly suppressed CD80, CD86 and CD83 and attenuated LPS-induced CD4+ T-cell proliferation. Reduced levels of interleukin-12 (IL-12), IL-10, IL-6, tumour necrosis factor-, and interferon-, (IFN-,) were found to be concomitant with the suppressive activity of apoptotic cells upon DC. Furthermore, intracellular staining confirmed IFN-, expression by DC in association with apoptotic environments. The specific generation of IFN-, by DC within apoptotic environments is suggestive of an anti-inflammatory role by the induction of indoleamine 2,3-dioxygenase (IDO). Both neutralization of IFN-, and IDO blockade demonstrated a role for IFN-, and IDO in the suppression of CD4+ T cells. Moreover, we demonstrate that IDO expression within the DC was found to be IFN-,-dependent. Blocking transforming growth factor-, (TGF-,) also produced a partial release in T-cell proliferation. Our study strongly suggests that apoptosis-induced DC suppression is not an immunological null event and two prime mediators underpinning these functional effects are IFN-,-induced IDO and TGF-,. [source]


    Tolerogenic dendritic cells pulsed with enterobacterial extract suppress development of colitis in the severe combined immunodeficiency transfer model

    IMMUNOLOGY, Issue 4 2007
    A. E. Pedersen
    Summary Immunomodulatory dendritic cells (DCs) that induce antigen-specific T-cell tolerance upon in vivo adoptive transfer are promising candidates for immunotherapy of autoimmune diseases. The feasibility of such a strategy has recently proved its efficacy in animal models of allotransplantation and experimental allergic encephalitis, but the effect in inflammatory bowel disease has not yet been demonstrated. In severe combined immunodeficient (SCID) mice, adoptively transferred CD4+ CD25, T cells repopulate the lymphoid tissues and lead to development of chronic colitis characterized by CD4+ T-cell proliferation against enterobacterial extract in vitro. In this model, we adoptively transferred in-vitro -generated bone-marrow-derived DCs exposed to interleukin-10 (IL-10) and an enterobacterial extract. We show that these cells are CD11c positive with intermediate expression of CD40, CD80 and CD86 and have a diminished secretion of IL-6, IL-12 p40/70, tumour necrosis factor-, and keratinocyte-derived chemokine (KC) compared to DCs treated with enterobacterial extract alone. In vivo, these cells prevented weight loss in SCID mice adoptively transferred with CD4+ CD25, T cells, resulted in a lower histopathology colitis score and tended to result in higher serum levels of IL-1,, IL-10, IL-12, IL-13, IL-17, KC and monokine induced by interferon-gamma (MIG). These data underscore the potential of using immunomodulatory DCs to control inflammatory bowel disease and demonstrate its potential use in future human therapeutic settings. [source]


    Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals

    IMMUNOLOGY, Issue 4 2007
    Jeffrey A. Martinson
    Summary Oligodeoxynucleotides (ODN) with unmethylated deoxycytidyl-deoxyguanosine dinucleotides (CpG-ODNs) stimulate Toll-like receptor 9 (TLR9) in plasmacytoid dendritic cells (pDC) and B cells and activate innate and adaptive immunity. Three classes of synthetic CpG-ODNs, class A, B and C, activate cells through TLR9; our goal was to evaluate their effect on cells from human immunodeficiency virus (HIV)-1+ individuals. We compared the frequencies and the unstimulated activation status of immune effector cells in HIV-1+ and HIV-1, individuals. Fewer pDC, myeloid dendritic cells (mDC), B cells, natural killer (NK) cells and invariant natural killer T cells (iNKT) were present in HIV-1+ peripheral blood mononuclear cells (PBMC) and their baseline activation status was higher than HIV-1, PBMC. Exposure of HIV-1+ PBMC to all classes of CpG-ODNs led to activation and maturation of pDC based on CD86, CD80, and CD83 expression similar to that of cells from HIV-1, individuals. The percentage of CpG-ODN stimulated pDC that express CD40 was dramatically higher when cells were obtained from HIV-1+ than from HIV-1, individuals. B-lymphocytes were activated similarly in HIV-1+ and HIV-1, individuals. mDC, NK and iNKT cell, which lack TLR9, were indirectly activated. Interferon-, (IFN-,) and interferon inducible protein 10 (IP-10) secretion was induced by class A or C but not class B CpG-ODN, but the concentrations were less than those produced by HIV-1, PBMC. HIV-1 infected individuals have fewer innate effector cells that are chronically activated, but these cells can be further activated by CpG-ODN, which suggests that synthetic CpG-ODNs could be used to enhance the immune system in HIV-1 infected individuals. [source]


    Immune-privileged embryonic Swiss mouse STO and STO cell-derived progenitor cells: major histocompatibility complex and cell differentiation antigen expression patterns resemble those of human embryonic stem cell lines

    IMMUNOLOGY, Issue 1 2006
    Katherine S. Koch
    Summary Embryonic mouse STO (S, SIM; T, 6-thioguanine resistant; O, ouabain resistant) and 3(8)21-enhanced green fluorescent protein (EGFP) cell lines exhibit long-term survival and hepatic progenitor cell behaviour after xenogeneic engraftment in non-immunosuppressed inbred rats, and were previously designated major histocompatibility complex (MHC) class I- and class II-negative lines. To determine the molecular basis for undetectable MHC determinants, the expression and haplotype of H-2K, H-2D, H-2L and I-A proteins were reassessed by reverse transcriptase,polymerase chain reaction (RT-PCR), cDNA sequencing, RNA hybridization, immunoblotting, quantitative RT-PCR (QPCR), immunocytochemistry and flow cytometry. To detect cell differentiation (CD) surface antigens characteristic of stem cells, apoptotic regulation or adaptive immunity that might facilitate progenitor cell status or immune privilege, flow cytometry was also used to screen untreated and cytokine [interferon (IFN)-,]-treated cultures. Despite prior PCR genotyping analyses suggestive of H-2q haplotypes in STO, 3(8)21-EGFP and parental 3(8)21 cells, all three lines expressed H-2K cDNA sequences identical to those of d-haplotype BALB/c mice, as well as constitutive and cytokine-inducible H-2Kd determinants. In contrast, apart from H-2Ld[LOW] display in 3(8)21 cells, H-2Dd, H-2Ld and I-Ad determinants were undetectable. All three lines expressed constitutive and cytokine-inducible CD34; however, except for inducible CD117[LOW] expression in 3(8)21 cells, no expression of CD45, CD117, CD62L, CD80, CD86, CD90·1 or CD95L/CD178 was observed. Constitutive and cytokine-inducible CD95[LOW] expression was detected in STO and 3(8)21 cells, but not in 3(8)21-EGFP cells. MHC (class I+[LOW]/class II,) and CD (CD34+/CD80,/CD86,/CD95L,) expression patterns in STO and STO cell-derived progenitor cells resemble patterns reported for human embryonic stem cell lines. Whether these patterns reflect associations with mechanisms that are regulatory of immune privilege or functional tissue-specific plasticity is unknown. [source]


    Airways infection with virulent Mycobacterium tuberculosis delays the influx of dendritic cells and the expression of costimulatory molecules in mediastinal lymph nodes

    IMMUNOLOGY, Issue 4 2004
    Gina S. García-Romo
    Summary Despite tuberculosis resurgence and extensive dendritic cell (DC) research, there are no in vivo studies evaluating DC within regional lymphoid tissue during airways infection with virulent Mycobacterium tuberculosis (Mtb) H37Rv. Using DC-specific antibodies, immunocytochemistry, flow cytometry and Ziehl,Neelsen (ZN) for bacilli staining, we searched for Mtb and DC changes within mediastinal lymph nodes, after intratracheal (ITT) inoculation of virulent Mtb. ZN and immunocytochemistry in frozen and paraffin sections of mediastinal lymph nodes identified Mtb until day 14 after ITT inoculation, associated with CD11c+ and Dec205+ DC. Analysing CD11c, MHC-CII, and Dec205 combinations by flow cytometry in MLN suspensions revealed that CD11c+/MHC-CII+ and CD11c+/Dec205+ DC did not increase until day 14, peaked on day 21, and sharply declined by day 28. No changes were seen in control, saline-inoculated animals. The costimulatory molecules evaluated in CD11c+ DCs followed a similar trend; the CD80 increase was negligible, slightly surpassed by CD40. CD86 increased earlier and the three markers peaked at day 21, declining by day 28. While antigen-specific proliferation was not evident for MLN CD4+ T cells at 2 weeks postinfection, delayed-type hypersensitivity responses upon ITT inoculation revealed that, as early as day 3 and 7, both the priming and peripheral systemic immune responses were clearly established, persisting until days 14,21. While airways infection with virulent Mtb triggers an early, systemic peripheral response maintained for three weeks, this seems dissociated from regional events within mediastinal lymph nodes, such as antigen-specific T-cell reactivity and a delay in the influx and local activation of DC. [source]


    Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells

    IMMUNOLOGY, Issue 2 2003
    Dianne L. Commeren
    Summary The immunoregulatory cytokine, interleukin-10 (IL-10), has been shown to inhibit the maturation of human myeloid dendritic cells (DC). In the present study, we demonstrate that IL-10 has paradoxical effects on the maturation of murine myeloid bone marrow-derived DC. On the one hand, IL-10 inhibits the maturation of murine myeloid DC. The addition of IL-10 to granulocyte,macrophage colony-stimulating factor (GM-CSF)-supported murine BM-derived DC cultures reduced the frequency of major histocompatibility complex (MHC) class IIbright cells. These IL-10-pretreated DC have a reduced capacity to stimulate T cells in an allogeneic mixed leucocyte reaction. On the other hand, however, and in contrast to the effects of IL-10 on human DC, we found that the addition of IL-10 from the initiation of the culture onwards induced an up-regulation of the expression of the costimulatory molecules CD40, CD80 and CD86 on murine myeloid DC, as compared to DC generated with GM-CSF only. Moreover, a subpopulation of IL-10-pretreated MHC class IIdim DC lacked the capacity to take up dextran-fluorescein isothiocyanate (FITC), a feature of DC maturation. Taken together, our data demonstrate that the generation of murine myeloid DC in the presence of IL-10 results in a population of incompletely matured MHC class IIdim CD80+ CD86+ DC. These DC lack T-cell stimulatory capacity, suggesting a role for IL-10 in conferring tolerogenic properties on murine myeloid DC. [source]


    Selective regulation of CD40 expression in murine dendritic cells by thiol antioxidants

    IMMUNOLOGY, Issue 2 2003
    Norifumi Iijima
    Summary Interaction of CD40 on dendritic cells (DC) with CD40 ligand induces interleukin-12 (IL-12) production by these DC during the antigen presentation. Thus, the level of CD40 expression appears to influence the capability of DC to induce a T helper 1 (Th1) response. However, it is not fully understood how CD40 expression on DC is regulated. In the present study, we examined the effects of the reducing agents, N -acetyl- l -cysteine (NAC) and reduced glutathione (GSH), on tumour necrosis factor-, (TNF-,)-induced phenotypic changes in murine DC. TNF-, markedly increased the expression on DC of major histocompatibility complex (MHC) and the costimulatory molecules, CD40, CD80 and CD86. Both NAC and GSH completely abolished the TNF-,-induced enhancement of CD40 expression, but had no considerable effect on the expression of CD80, CD86 and MHC. The marked decrease of CD40 protein with NAC was also detected by Western blotting, but was not associated with the expression level of CD40 mRNA in DC. Thus, NAC appears to reduce CD40 expression on DC by regulating a post-transcriptional pathway. The inhibitory effect of NAC or GSH on TNF-,-induced CD40 expression was released by simply removing these agents from the culture. In contrast, culture of TNF-,-treated DC with NAC or GSH markedly decreased the expression of CD40 within 12 hr. These results demonstrate that reducing agents selectively, rapidly and reversibly regulate CD40 expression on DC, which may eventually affect the capability of DC for Th1/Th2 polarization. [source]


    Enhanced maturation and functional capacity of monocyte-derived immature dendritic cells by the synthetic immunomodulator Murabutide

    IMMUNOLOGY, Issue 4 2001
    Vincent Vidal
    Summary Murabutide is a safe synthetic immunomodulator derived from muramyl dipeptide, the smallest bioactive unit of bacterial peptidoglycan. Although it is well known that muramyl peptides modulate the functions of monocytes/macrophages, their activity on dendritic cells is poorly documented. We thus investigated the effects of Murabutide on immunophenotype, endocytosis, T-cell stimulatory capacity, and cytokine secretion of human monocyte-derived immature dendritic cells (iDCs). We found that Murabutide triggers immunophenotypic changes as upon treatment, iDCs up-regulate the surface expression of the major histocompatibility complex type II molecule human leucocyte antigen-DR, the co-stimulatory molecules CD80, CD86 and CD40 and the differentiation marker CD83, and down-regulate the expression of the mannose receptor. These phenotypic changes are also mirrored by changes in their biological activity. Subsequent to treatment with the synthetic immunomodulator, DC have a decreased endocytic capacity but exhibit enhanced stimulatory capacity for both allogeneic and autologous T cells. In addition, Murabutide-stimulated iDCs have a greater cytostatic activity toward the tumour cell line THP-1. Furthermore, in the presence of Murabutide, DCs transiently increased the release of macrophage inhibitory protein-1,, tumour necrosis factor-, and interleukin-10, whereas the enhanced production of macrophage-colony stimulating factor was sustained over the 3-day period analysed. In addition, Murabutide triggers the phosphorylation of the three classes of mitogen-activated protein kinases in iDCs. Altogether our results demonstrate that Murabutide triggers the maturation and activation of monocyte-derived iDCs. As this immunomodulator is approved for administration in humans, it could be a useful adjunct to boost the efficacy of DC-based vaccines designed against tumours or virus-infected cells. [source]


    Molecular cloning of the cDNAs encoding the feline B-lymphocyte activation antigen B7,1 (CD80) and B7,2 (CD86) homologues which interact with human CTLA4-Ig

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 5-6 2000
    Y. Nishimura
    We cloned the cDNAs encoding the feline homologues of B-lymphocyte activation antigens B7,1 (CD80) and B7,2 (CD86). We expressed recombinant feline CD80 and CD86 molecules by the baculovirus expression system, and demonstrated their binding ability to human CTLA4-murine immunoglobulin fusion protein. [source]


    Effect of PUVA, narrow-band UVB and cyclosporin on inflammatory cells of the psoriatic plaque

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 3 2007
    Gul Erkin
    Background:, Because antigen presenting is necessary for T-cell activation, antigen-presenting cells should be involved in the pathogenesis of psoriasis. In this study, our purpose was to evaluate and compare effects of PUVA, cyclosporine A and narrow-band UVB on dendritic cells and activated lymphocytes in the psoriatic lesions. Methods:, Forty-five volunteered patients (15 patients in each treatment group as PUVA, cyclosporin A and narrow-band UVB) were enrolled in this study. Lesional skin biopsies were taken from each patient before and after treatments. Fresh frozen biopsies were studied for the expressions of CD1a, CD68, CD86, CD4, CD8 and HLA-DR proteins by immunohistochemistry. Results:, There was no correlation between severity of the lesions and expressions of the antigens. Only PUVA significantly decreased CD1a+ epidermal Langerhans cells' (LCs) counts. Treatment modalities decreased expression of costimulator CD86, and most of them decrease antigen-presenting capacity of skin by decreasing HLA class-II expression. Conclusions:, All treatment modalities equally reduce lymphocytes, macrophages and dendritic cells. PUVA is the only treatment that decreases epidermal LCs. All treatments effectively diminish expression of CD86 and inhibit this step of inflammation. [source]


    Upregulation of co-stimulatory molecule expression and dendritic cell marker (CD83) on B cells in periodontal disease

    JOURNAL OF PERIODONTAL RESEARCH, Issue 3 2002
    Rangsini Mahanonda
    T cells and their cytokines are well known for their important role in the pathogenesis of periodontitis. To date, the role of antigen presenting cells (APCs), which are known to be critical in the regulation of T cell response, has been poorly investigated in periodontitis. In this study, we analyzed the expression of co-stimulatory molecules (CD80 and CD86) and CD83, which is a marker of mature dendritic cells, on gingival cells that were isolated from severe periodontitis tissues, with the use of flow cytometry. Significant upregulation of CD86 and CD83 expression was detected in periodontitis lesions, and most of this occurred on B cells. In vitro peripheral blood mononuclear cell cultures showed that stimulation with different periodontopathic bacteria, that included Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Prevotella intermedia, and Actinomyces viscosus, upregulated both CD86 and CD83 expression on B cells. Therefore, the presence of plaque bacteria may be responsible for the enhanced expression seen in vivo on gingival B cells. APC function by bacterial-activated B cells was further investigated using allogeneic mixed leukocyte reactions. After 24 h culture with either A. actinomycetemcomitans or P. gingivalis, these activated B cells performed as potent APCs in mixed leukocyte reactions, and they stimulated T cells to produce high levels of gamma interferon and minimal interleukin-5. In conclusion, periodontopathic bacterial-induced B cell activation with upregulation of CD86 and CD83 may be associated with enhanced APC function. The results of this study suggest, therefore, that infiltrated gingival B cells have a possible role as APCs in the regulation and maintenance of local T cell response in periodontitis. [source]