| |||
CCP Domains (ccp + domain)
Selected AbstractsStructural stability and heat-induced conformational change of two complement inhibitors: C4b-binding protein and factor HPROTEIN SCIENCE, Issue 5 2004Lena Kask C4BP, C4b-binding protein; FH, factor H; CCP, complement control protein; CD, circular dichroism; FTIR, Fourier transform-infrared spectroscopy; PT, prothrombin; VCP, vaccinia virus complement control protein Abstract The complement inhibitors C4b-binding protein (C4BP) and factor H (FH) both consist of complement control protein (CCP) domains. Here we examined the secondary structure of both proteins by circular dichroism and Fourier-transform infrared technique at temperatures ranging from 30°C,90°C. We found that predominantly ,-sheet structure of both proteins was stable up to 70°C, and that a reversible conformational change toward ,-helix was apparent at temperatures ranging from 70°C to 90°C. The ability of both proteins to inhibit complement was not impaired after incubation at 95°C, exposure to extreme pH conditions, and storage at room temperature for several months. Similar remarkable stability was previously observed for vaccinia virus control protein (VCP), which is also composed of CCP domains; it therefore seems to be a general property of CCP-containing proteins. A typical CCP domain has a hydrophobic core, which is wrapped in ,-sheets and stabilized by two disulphide bridges. How the CCP domains tolerate harsh conditions is unclear, but it could be due to a combination of high content of prolines, hydrophobic residues, and the presence of two disulphide bridges within each domain. These findings are of interest because CCP-containing complement inhibitors have been proposed as clinical agents to be used to control unwanted complement activation that contributes to many diseases. [source] Lineage-independent mosaic expression and regulation of the Ciona multidom gene in the ancestral notochordDEVELOPMENTAL DYNAMICS, Issue 7 2007Izumi Oda-Ishii Abstract The transcription factor Ciona Brachyury (Ci-Bra) plays an essential role in notochord development in the ascidian Ciona intestinalis. We characterized a putative Ci-Bra target gene, which we named Ci - multidom, and analyzed in detail its expression pattern in normal embryos and in embryos where Ci - Bra was misexpressed. Ci - multidom encodes a novel protein, which contains eight CCP domains and a partial VWFA domain. We show that an EGFP-multidom fusion protein localizes preferentially to the endoplasmic reticulum (ER), and is excluded from the nucleus. In situ hybridization experiments demonstrate that Ci - multidom is expressed in the notochord and in the anterior neural boundary (ANB). We found that the expression in the ANB is fully recapitulated by an enhancer element located upstream of Ci - multidom. By means of misexpression experiments, we provide evidence that Ci-Bra controls transcription of Ci - multidom in the notochord; however, while Ci-Bra is homogeneously expressed throughout this structure, Ci - multidom is transcribed at detectable levels only in a random subset of notochord cells. The number of notochord cells expressing Ci - multidom varies among different embryos and is independent of developmental stage, lineage, and position along the anterior,posterior axis. These results suggest that despite its morphological simplicity and invariant cell-lineage, the ancestral notochord is a mosaic of cells in which the gene cascade downstream of Brachyury is differentially modulated. Developmental Dynamics 236:1806,1819, 2007. © 2007 Wiley-Liss, Inc. [source] Structural stability and heat-induced conformational change of two complement inhibitors: C4b-binding protein and factor HPROTEIN SCIENCE, Issue 5 2004Lena Kask C4BP, C4b-binding protein; FH, factor H; CCP, complement control protein; CD, circular dichroism; FTIR, Fourier transform-infrared spectroscopy; PT, prothrombin; VCP, vaccinia virus complement control protein Abstract The complement inhibitors C4b-binding protein (C4BP) and factor H (FH) both consist of complement control protein (CCP) domains. Here we examined the secondary structure of both proteins by circular dichroism and Fourier-transform infrared technique at temperatures ranging from 30°C,90°C. We found that predominantly ,-sheet structure of both proteins was stable up to 70°C, and that a reversible conformational change toward ,-helix was apparent at temperatures ranging from 70°C to 90°C. The ability of both proteins to inhibit complement was not impaired after incubation at 95°C, exposure to extreme pH conditions, and storage at room temperature for several months. Similar remarkable stability was previously observed for vaccinia virus control protein (VCP), which is also composed of CCP domains; it therefore seems to be a general property of CCP-containing proteins. A typical CCP domain has a hydrophobic core, which is wrapped in ,-sheets and stabilized by two disulphide bridges. How the CCP domains tolerate harsh conditions is unclear, but it could be due to a combination of high content of prolines, hydrophobic residues, and the presence of two disulphide bridges within each domain. These findings are of interest because CCP-containing complement inhibitors have been proposed as clinical agents to be used to control unwanted complement activation that contributes to many diseases. [source] The structure of C2b, a fragment of complement component C2 produced during C3 convertase formationACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2009Vengadesan Krishnan The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg2+ -dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8,Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b,C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein. [source] |