| |||
CCD
Terms modified by CCD Selected AbstractsEffectiveness of limited cone-beam computed tomography in the detection of horizontal root fractureDENTAL TRAUMATOLOGY, Issue 3 2009vanç Kamburo Root fractures were created in the horizontal plane in 18 teeth by a mechanical force and fragments were relocated. Another 18 intact teeth with no horizontal root fracture served as a control group. Thirty-six teeth were placed in the respective empty maxillary anterior sockets of a human dry skull in groups three by three. Intraoral radiographs were obtained in three different vertical views by utilizing Eastman Kodak E-speed film, CCD sensor, RVG 5.0 Trophy and a PSP sensor Digora, Optime. Cone beam CT images were taken with a unit (3D Accuitomo; J Morita MFG. Corp, Kyoto, Japan). Three dental radiologists separately examined the intraoral film, PSP, CCD and cone beam CT images for the presence of horizontal root fracture. Specificity and sensitivity for each radiographic technique were calculated. Kappa statistics was used for assessing the agreement between observers. Chi-square statistics was used to determine whether there were differences between the systems. Results were considered significant at P < 0.05. Cone beam CT images revealed significantly higher sensitivities (P < 0.05) than the intraoral systems between which no significant differences were found. Specificities did not show any statistically significant differences between any of the four systems. The kappa values for inter-observer agreement between observers (four pairs) ranged between 0.82,0.90 for the 3DX evaluations and between 0.63,0.71 for the different types of intraoral images. Limited cone beam CT, outperformed the two-dimensional intraoral, conventional as well as digital, radiographic methods in detecting simulated horizontal root fracture. [source] On-line sample stacking and short-end injection CE for the determination of fluoxetine and norfluoxetine in plasma: Method development and validation using experimental designsELECTROPHORESIS, Issue 18 2007Chia-Chia Lu Abstract A short-end injection CE method combining field-amplified sample stacking (FASS) is presented for the analysis of fluoxetine (FL) and norfluoxetine in plasma. In this study, FASS enhanced the sensitivity about 1100-fold, while short-end injection reduced the analysis time to less than 4,min. Parameters involved in the separations were investigated using a central composite design (CCD) and response surface methodology to optimize the separation conditions in a total of only 32 runs. Samples injected into the capillary for 99.9,s at a voltage of ,5,kV were stacked in a water plug (0.5,psi, 9,s). Baseline resolution of FL and its major metabolite was achieved using a BGE formulation consisting of phosphate,triethanolamine at low pH, and a separation voltage of ,10,kV. Five percent methanol was added as organic modifier to enhance selectivity and resolution. The linear range was between 10 and 500,ng/mL (r >0.9946), covering the expected plasma therapeutic ranges. The LOD in plasma were 4,ng/mL (S/N,=,3), a value comparable to that obtained using LC-MS, showing the success of the on-line stacking technique. Our method was also successfully validated in quantification and pharmacokinetic studies with three volunteer plasma samples and could be applied to pharmacogenetic studies. [source] Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detectionELECTROPHORESIS, Issue 10 2007Yan Xu Abstract This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270,ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level. [source] Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detectionELECTROPHORESIS, Issue 4 2003Pavel Coufal Abstract Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts. [source] Altered functional properties of satellite glial cells in compressed spinal gangliaGLIA, Issue 15 2009Haijun Zhang Abstract The cell bodies of sensory neurons in the dorsal root ganglion (DRG) are enveloped by satellite glial cells (SGCs). In an animal model of intervertebral foraminal stenosis and low-back pain, a chronic compression of the DRG (CCD) increases the excitability of neuronal cell bodies in the compressed ganglion. The morphological and electrophysiological properties of SGCs were investigated in both CCD and uninjured, control lumbar DRGs. SGCs responded within 12 h of the onset of CCD as indicated by an increased expression of glial fibrillary acidic protein (GFAP) in the compressed DRG but to lesser extent in neighboring or contralateral DRGs. Within 1 week, coupling through gap junctions between SGCs was significantly enhanced in the compressed ganglion. Under whole-cell patch clamp recordings, inward and outward potassium currents, but not sodium currents, were detected in individual SGCs. SGCs enveloping differently sized neurons had similar electrophysiological properties. SGCs in the compressed vs. control DRG exhibited significantly reduced inwardly rectifying potassium currents (Kir), increased input resistances and positively shifted resting membrane potentials. The reduction in Kir was greater for nociceptive medium-sized neurons compared to non-nociceptive neurons. Kir currents of SGCs around spontaneously active neurons were significantly reduced 1 day after compression but recovered by 7 days. These data demonstrate rapid alterations in glial membrane currents and GFAP expression in close temporal association with the development of neuronal hyperexcitability in the CCD model of neuropathic pain. However, these alterations are not fully sustained and suggest other mechanisms for the maintenance of the hyperexcitable state. © 2009 Wiley-Liss, Inc. [source] Influence of moisture content on measurement accuracy of porous media thermal conductivityHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2009Mingzhi Yu Abstract The thermal conductivity measurement accuracy of sand was experimentally studied with a hot disk thermal constant analyzer and water morphologies, distribution, and evolution at the pore scale were observed with a charge coupled device (CCD) combined with a microscope. It was found that thermal conductivities of samples with low moisture content (<25%) could not be accurately measured. For samples with low moisture content, the analysis showed that the water in the region adjacent to the analyzer sensor mainly existed as isolated liquid bridges between/among sand particles and would evaporate and diffuse to relatively far regions because of being heated by the sensor during measurement. Water evaporation and diffusion caused the sample constitution in the region adjacent to the sensor to vary throughout the whole measurement process, and accordingly induced low accuracy of the obtained thermal conductivities. Due to high water connectivity in pores, the rate of water evaporation and diffusion in porous media of high moisture content was relatively slow when compared with that of low moisture content. Meanwhile, water in the relatively far regions flowed back to the region adjacent to the sensor by capillary force. Therefore, samples consisting of the region adjacent to the sensor maintained the constant and thermal conductivities of porous media with relatively high moisture content and could be measured with high accuracy. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20272 [source] Evaluation of a digital camera image applied to PCB inspectionHUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, Issue 4 2008Bernard C. Jiang Rapid advancement and widespread digital camera applications have made it possible to replace charge-coupled device (CCD) cameras in automatic inspections for industrial applications. However, most digital camera applications using the automatic exposure mode may not be effective in some of the inspection environments. The reflection from a board surface in printed circuit board (PCB) inspections is one such problem area. The objective of this study is to develop a methodology to evaluate the effectiveness of using digital cameras for inspection. The indices used for evaluating digital camera image quality are the perceived image quality, the visual resolution, and the noise. An experiment was designed and conducted to determine the optimal camera parameter combination for attaining the best image quality. The desirability function was used to compare various digital camera parameter settings in considering three image quality indices for selecting the best camera-operating conditions. Based on the developed model and the subjective image quality index, the overall image quality improved 9.4% and 13.86%, respectively. The developed methodology can be used to: (a) determine the digital camera image quality, (b) provide an improved model for determining the automatic exposure setting for digital camera designers, and (c) adjust the digital camera parameters for automatic inspection. © 2008 Wiley Periodicals, Inc. [source] Mutations in RYR1 in malignant hyperthermia and central core disease,HUMAN MUTATION, Issue 10 2006Rachel Robinson Abstract The RYR1 gene encodes the skeletal muscle isoform ryanodine receptor and is fundamental to the process of excitation,contraction coupling and skeletal muscle calcium homeostasis. Mapping to chromosome 19q13.2, the gene comprises 106 exons and encodes a protein of 5,038 amino acids. Mutations in the gene have been found in association with several diseases: the pharmacogenetic disorder, malignant hyperthermia (MH); and three congenital myopathies, including central core disease (CCD), multiminicore disease (MmD), and in an isolated case of a congenital myopathy characterized on histology by cores and rods. The majority of gene mutations reported are missense changes identified in cases of MH and CCD. In vitro analysis has confirmed that alteration of normal calcium homeostasis is a functional consequence of some of these changes. Genotype,phenotype correlation studies performed using data from MH and CCD patients have also suggested that mutations may be associated with a range of disease severity phenotypes. This review aims to summarize the current understanding of RYR1 mutations reported in association with MH and CCD and the present viewpoint on the use of mutation data to aid clinical diagnosis of these conditions. Hum Mutat 27(10), 977,989, 2006. © 2006 Wiley-Liss, Inc. [source] Constrained total least-squares computations for high-resolution image reconstruction with multisensorsINTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 1 2002Michael K. Ng Multiple undersampled images of a scene are often obtained by using a charge-coupled device (CCD) detector array of sensors that are shifted relative to each other by subpixel displacements. This geometry of sensors, where each sensor has a subarray of sensing elements of suitable size, has been popular in the task of attaining spatial resolution enhancement from the acquired low-resolution degraded images that comprise the set of observations. With the objective of improving the performance of the signal processing algorithms in the presence of the ubiquitous perturbation errors of displacements around the ideal subpixel locations (because of imperfections in fabrication), in addition to noisy observation, the errors-in-variables or the total least-squares method is used in this paper. A regularized constrained total least-squares (RCTLS) solution to the problem is given, which requires the minimization of a nonconvex and nonlinear cost functional. Simulations indicate that the choice of the regularization parameter influences significantly the quality of the solution. The L-curve method is used to select the theoretically optimum value of the regularization parameter instead of the unsound but expedient trial-and-error approach. The expected superiority of this RCTLS approach over the conventional least-squares theory-based algorithm is substantiated by example. © 2002 John Wiley & Sons, Inc. Int J Imaging Syst Technol 12, 35,42, 2002 [source] High-throughput enzyme kinetics using microarraysISRAEL JOURNAL OF CHEMISTRY, Issue 2 2007Guoxin Lu We report a microanalytical method to study enzyme kinetics. The technique involves immobilizing horseradish peroxidase on a poly-L-lysine (PLL)-coated glass slide in a microarray format, followed by applying substrate solution onto the enzyme microarray. Enzyme molecules are immobilized on the PLL-coated glass slide through electrostatic interactions, and no further modification of the enzyme or glass slide is needed. In situ detection of the products generated on the enzyme spots is made possible by monitoring the light intensity of each spot using a scientific-grade charged-coupled device (CCD). Reactions of substrate solutions of various types and concentrations can be carried out sequentially on one enzyme microarray. To account for the loss of enzyme from washing in between runs, a standard substrate solution is used for calibration. Substantially reduced amounts of substrate solution are consumed for each reaction on each enzyme spot. The Michaelis constant Km obtained by using this method is comparable to the result for homogeneous solutions. Absorbance detection allows universal monitoring, and no chemical modification of the substrate is needed. High-throughput studies of native enzyme kinetics for multiple enzymes are therefore possible in a simple, rapid, and low-cost manner. [source] A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY IIJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Oskar Paris A new instrument for simultaneous microbeam small- and wide-angle X-ray scattering and X-ray fluorescence (SAXS/WAXS/XRF) is presented. The instrument is installed at the microfocus beamline at BESSY II and provides a beam of 10,µm size with a flux of about 109 photons,s,1. A SAXS resolution up to 500,Åd -spacing and a range of scattering vectors of almost three orders of magnitude are reached by using a large-area high-resolution CCD-based detector for simultaneous SAXS/WAXS. The instrument is particularly suited for scanning SAXS/WAXS/XRF experiments on hierarchically structured biological tissues. The necessary infrastructure, such as a cryo-stream facility and an on-site preparation laboratory for biological specimens, are available. [source] Differential Expression Patterns of Runx2 Isoforms in Cranial Suture MorphogenesisJOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2001Mi-Hyun Park Abstract Runx2 (previously known as Cbfa1/Pebp2,A/AML3), a key transcription factor in osteoblast differentiation, has at least two different isoforms using alternative promoters, which suggests that the isoforms might be expressed differentially. Haploinsufficiency of the Runx2 gene is associated with cleidocranial dysplasia (CCD), the main phenotype of which is inadequate development of calvaria. In spite of the biological relevance, Runx2 gene expression patterns in developing calvaria has not been explored previously, and toward this aim we developed three probes: pRunx2, which comprises the common coding sequence of Runx2 and hybridizes with all isoforms; pPebp2,A, which specifically hybridizes with the isoform transcribed with the proximal promoter; and pOsf2, which hybridizes with the isoform transcribed with the distal promoter. These probes were hybridized with tissue sections of mouse calvaria taken at various time points in development. Runx2 expression was localized to the critical area of cranial suture closure, being found in parietal bones, osteogenic fronts, and sutural mesenchyme. Pebp2,A and Osf2 showed tissue-specific expression patterns. The sites of Pebp2,A expression were almost identical to that of pRunx2 hybridization but expression was most intense in the sutural mesenchyme, where undifferentiated mesenchymal cells reside. The Osf2 isoform was strongly expressed in the osteogenic fronts, as well as in developing parietal bones, where osteopontin (OP) and osteocalcin (OC) also were expressed. However, in contrast to Pebp2,A, Osf2 expression did not occur in sutural mesenchyme. Pebp2,A also was expressed prominently in primordial cartilage that is found under the sutural mesenchyme and is not destined to be mineralized. Thus, Osf2 isoforms contribute to events later in osteoblast differentiation whereas the Pebp2,A isoform participates in a wide variety of cellular activities ranging from early stages of osteoblast differentiation to the final differentiation of osteoblasts. [source] Lipase-mediated methanolysis of soybean oils for biodiesel productionJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 1 2008Xin Chen Abstract BACKGROUND: Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Biocatalysis of soybean oils using soluble lipase offers an alternative approach to lipase-catalyzed biodiesel production using immobilized enzyme or whole-cell catalysis. The central composite design (CCD) of response surface methodology (RSM) was used here to evaluate the effects of enzyme concentration, temperature, molar ratio of methanol to oil and stirring rate on the yield of fatty methyl ester. RESULTS: Lipase NS81006 from a genetically modified Aspergillus oryzae was utilized as the catalyst for the transesterification of soybean oil for biodiesel production. The experimental data showed that enzyme concentration, molar ratio of methanol to oil and stirring rate had the most significant impact on the yield of fatty methyl ester; a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. The predicted biodiesel yield was 0.928 (w/w) under the optimal conditions and the subsequent verification experiments with biodiesel yield of 0.936 ± 0.014 (w/w) confirmed the validity of the predicted model. CONCLUSION: RSM and CCD were suitable techniques to optimize the transesterification of soybean oil for biodiesel production by soluble lipase NS81006. The related lipase NS81006 reuse stability, chemical or genetic modification, and transesterification mechanism should be taken into consideration. Copyright © 2007 Society of Chemical Industry [source] Optimization of growth medium for the production of ,-amylase from Bacillus amyloliquefaciens using response surface methodologyJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2006M Saban Tanyildizi Abstract The optimization of nutrient levels for the production of ,-amylase by Bacillus amyloliquefaciens was carried out using response surface methodology (RSM) based on the 23 factorial central composite design (CCD). This procedure limited the number of actual experiments performed while allowing for possible interactions between three components. RSM was adopted to derive a statistical model for the effect of starch, peptone and yeast extract (YE) on ,-amylase production. The P -value of the coefficient for linear effects of starch and YE concentration was <0.0001, suggesting that this was the principal experimental variable, having the greatest effect on the production of ,-amylase. The optimal combinations of media constituents for maximum ,-amylase production were determined as 12.61 g L,1 starch, 2.83 g L,1 peptone and 1.25 g L,1 YE. The optimization of the medium resulted not only in a 34% higher enzyme activity than unoptimized medium but also in a reduced amount of the required medium constituents. Copyright © 2006 Society of Chemical Industry [source] Weighting hyperspectral image data for improved multivariate curve resolution resultsJOURNAL OF CHEMOMETRICS, Issue 9 2008Howland D. T. Jones Abstract The combination of hyperspectral confocal fluorescence microscopy and multivariate curve resolution (MCR) provides an ideal system for improved quantitative imaging when multiple fluorophores are present. However, the presence of multiple noise sources limits the ability of MCR to accurately extract pure-component spectra when there is high spectral and/or spatial overlap between multiple fluorophores. Previously, MCR results were improved by weighting the spectral images for Poisson-distributed noise, but additional noise sources are often present. We have identified and quantified all the major noise sources in hyperspectral fluorescence images. Two primary noise sources were found: Poisson-distributed noise and detector-read noise. We present methods to quantify detector-read noise variance and to empirically determine the electron multiplying CCD (EMCCD) gain factor required to compute the Poisson noise variance. We have found that properly weighting spectral image data to account for both noise sources improved MCR accuracy. In this paper, we demonstrate three weighting schemes applied to a real hyperspectral corn leaf image and to simulated data based upon this same image. MCR applied to both real and simulated hyperspectral images weighted to compensate for the two major noise sources greatly improved the extracted pure emission spectra and their concentrations relative to MCR with either unweighted or Poisson-only weighted data. Thus, properly identifying and accounting for the major noise sources in hyperspectral images can serve to improve the MCR results. These methods are very general and can be applied to the multivariate analysis of spectral images whenever CCD or EMCCD detectors are used. Copyright © 2008 John Wiley & Sons, Ltd. [source] Standardization of line-scan NIR imaging systemsJOURNAL OF CHEMOMETRICS, Issue 3-4 2007Zheng Liu Abstract A simple and easy to use method is proposed for standardizing NIR imaging systems for differences among detectors in the charge-coupled device (CCD) array and illumination unevenness. The standardization equations are then used to pre-treat NIR image data to reduce the systematic errors introduced by a line-scan NIR imaging system. The method requires only easily available homogeneous standards with relatively uniform spectral response. The effectiveness of the standardization in reducing the pixel-to-pixel biases and other systematic effects is illustrated with examples, and the improved sensitivity in results obtained from a multivariate image analysis (MIA) based on multi-way principal component analysis (MPCA) is demonstrated. Copyright © 2007 John Wiley & Sons, Ltd. [source] Digital photography: A primer for pathologistsJOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 2 2004Roger S. Riley Abstract The computer and the digital camera provide a unique means for improving hematology education, research, and patient service. High quality photographic images of gross specimens can be rapidly and conveniently acquired with a high-resolution digital camera, and specialized digital cameras have been developed for photomicroscopy. Digital cameras utilize charge-coupled devices (CCD) or Complementary Metal Oxide Semiconductor (CMOS) image sensors to measure light energy and additional circuitry to convert the measured information into a digital signal. Since digital cameras do not utilize photographic film, images are immediately available for incorporation into web sites or digital publications, printing, transfer to other individuals by email, or other applications. Several excellent digital still cameras are now available for less than $2,500 that capture high quality images comprised of more than 6 megapixels. These images are essentially indistinguishable from conventional film images when viewed on a quality color monitor or printed on a quality color or black and white printer at sizes up to 11×14 inches. Several recent dedicated digital photomicroscopy cameras provide an ultrahigh quality image output of more than 12 megapixels and have low noise circuit designs permitting the direct capture of darkfield and fluorescence images. There are many applications of digital images of pathologic specimens. Since pathology is a visual science, the inclusion of quality digital images into lectures, teaching handouts, and electronic documents is essential. A few institutions have gone beyond the basic application of digital images to developing large electronic hematology atlases, animated, audio-enhanced learning experiences, multidisciplinary Internet conferences, and other innovative applications. Digital images of single microscopic fields (single frame images) are the most widely utilized in hematology education at this time, but single images of many adjacent microscopic fields can be stitched together to prepare "zoomable" panoramas that encompass a large part of a microscope slide and closely simulate observation through a real microscope. With further advances in computer speed and Internet streaming technology, the virtual microscope could easily replace the real microscope in pathology education. Later in this decade, interactive immersive computer experiences may completely revolutionize hematology education and make the conventional lecture and laboratory format obsolete. Patient care is enhanced by the transmission of digital images to other individuals for consultation and education, and by the inclusion of these images in patient care documents. In research laboratories, digital cameras are widely used to document experimental results and to obtain experimental data. J. Clin. Lab. Anal. 18:91,128, 2004. © 2004 Wiley-Liss, Inc. [source] QUANTIFYING ADULTERATION IN ROAST COFFEE POWDERS BY DIGITAL IMAGE PROCESSINGJOURNAL OF FOOD QUALITY, Issue 2 2003EDSON E. SANO Pure arabica coffee and mixtures of coffee husks and straw, maize, brown sugar and soybean were produced in our laboratory as investigation materials. Red/Green/Blue (RGB) color composites, magnified twelve times, were generated using a Charge Coupled Device (CCD) camera connected to a stereo microscope and a personal computer with an image processing software package. The percent areas of the contaminants in each image were calculated by the Maximum Likelihood supervised classification technique. Best-fit equations relating weight percentage (g.kg -1) and the percent areas were obtained for each coffee contaminant. To test the method, 247 coffee samples of different amounts and types of adulterants were analyzed in the laboratory. The results showed that the new method developed can analyze precisely and quickly a large number of ground coffee powders. [source] Digital imaging in transmission electron microscopyJOURNAL OF MICROSCOPY, Issue 1 2000G. Y. Fan The digital revolution currently under way, as evidenced by the rapid development of the Internet and the world-wide-web technologies, is undoubtedly impacting the field of transmission electron microscopy (TEM). Digital imaging systems based on charge-coupled device (CCD) technologies, with pixel array size up to 2 k × 2 k at the present and increasing, are available for TEM applications and offer many attractions. Is it time to phase out film cameras on TEMs and close the darkrooms for good? This paper reviews digital imaging technologies for TEM at different voltages, and contrasts the performance of digital imaging systems with that of TEM film. The performance characteristics of CCD-based digital imaging systems, as well as methods for assessing them, are discussed. Other approaches to digital imaging are also briefly reviewed. [source] Model development for semicontinuous production of ethylene and norbornene copolymers having uniform compositionAICHE JOURNAL, Issue 3 2009Shaojie Liu Abstract Terminal and penultimate models for controlling copolymer composition distribution (CCD) in ethylene and norbornene (NB) copolymerization were developed by taking into account the variation of active site concentration with the initial comonomer ratio. The models were validated by batch polymerization experimental data. The terminal model gave better correlation with the composition data whereas the penultimate model had a better fit to the rate data. The terminal model was then used to design NB feeding policies in semicontinuous processes for targeted CCD profiles. Based on the model results, a series of ethylene-NB copolymers with various NB contents were prepared. With the same NB content, the semicontinuous process produced a uniform composition, whereas the batch process yielded broad CCD. The batch samples had lower Tg values and broader transition ranges, even yielded crystalline materials. In contrast, the semicontinuous samples overcame the disadvantages. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Particle surface temperature measurements with multicolor band pyrometryAICHE JOURNAL, Issue 1 2009Hong Lu Abstract A noncontact, color-band pyrometer, based on widely available, inexpensive digital imaging devices, such as commercial color cameras, and capable of pixel-by-pixel resolution of particle-surface temperature and emissivity is demonstrated and described. This diagnostic instrument is ideally suited to many combustion environments. The devices used in this method include color charge-coupled device (CCD), or complementary metal oxide semiconductor (CMOS) digital camera, or any other color-rendering camera. The color camera provides spectrally resolved light intensity data of the image, most commonly for three color bands (Red, Green, and Blue,), but in some cases for four or more bands or for a different set of colors. The CCD or CMOS sensor-mask combination has a specific spectral response curve for each of these color bands that spans the visible and often near infrared spectral range. A theory is developed, based on radiative heat transfer and camera responsivity that allows quantitative surface temperature distribution calculation, based on a photograph of an object in emitted light. Particle surface temperature calculation is corrected by heat transfer analysis with reflection between the particle and reactor wall for particles located in furnace environments, but such corrections lead to useful results only when the particle temperature is near or below the wall temperatures. Wood particle-surface temperatures were measured with this color-band pyrometry during pyrolysis and combustion processes, which agree well with thermocouple measured data. Particle-surface temperature data simultaneously measured from three orthogonal directions were also mapped onto the surface of a computer generated 3-D (three-dimensional) particle model. © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source] Common mutations and independent assortment of CCDJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 9 2002Uwe Baumert No abstract is available for this article. [source] In vivo mandibular elastic deformation during clenching on pivotsJOURNAL OF ORAL REHABILITATION, Issue 2 2002Ting Jiang Lower rigidly connected long span bridges supported by natural abutments or implants sometimes become loose, come off, or fracture after a period of usage. Many reasons have been discussed for these failures. However, few researchers have shown the influence of mandibular elastic deformation on the abutments, although this influence is likely to produce a distortion force between the abutment and prosthesis. Therefore, this study measured the elastic deformation of the human mandibular arch during clenching on pivots by using charge-coupled device (CCD) cameras and an image analysing system. When the subjects clenched on the canines (unilaterally or bilaterally) or bilateral second molars, no mandibular deformation was found; whereas when the subjects clenched on the unilateral second molars, the mandibular arch on the non-pivot side moved upward and inward and the straight line distances between the right and left measurement points decreased by 0·2 mm. The magnitude of deformation is smaller than the depressible limit of periodontal membrane. This suggests that the influence of mandibular deformation on the connected prosthesis is negligible in the case of the natural root supported long span bridge but should probably be considered in the case of the implant supported bridge. [source] In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation modelsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 8 2006Brian T. Feeley Abstract Regional gene therapy techniques are promising methods to enhance bone formation in large bone defects that would be difficult to treat with allograft or autograft bone stock. In this study, we compared in vivo temporal expression patterns of adenoviral- and lentiviral-mediated gene therapy in two bone formation models. Primary rat bone marrow cells (RBMC) were transduced with lentiviral or adenoviral vectors containing luciferase (Luc) or BMP-2 cDNA, or cotransduced with vectors containing Luc and bone morphogenetic protein 2 (BMP-2). In vitro protein production was determined with luciferase assay or ELISA (for BMP-2 production) weekly for 12 weeks. Two bone formation models were used,a hind limb muscle pouch or radial defect,in SCID mice. A cooled charged-coupled device (CCD) camera was used to image in vivo luciferase expression weekly for 12 weeks. In vitro, adenoviral expression of BMP-2 and luciferase was detected by ELISA or luciferase assay, respectively, for 4 weeks. Lentiviral expression of BMP-2 and luciferase was sustained in culture for 3 months. Using the CCD camera, we found that adenoviral vectors expressed luciferase expression for up to 21 days, but lentiviral vectors expressed target gene expression for 3 months in vivo in both bone formation models. There was no detectable difference in the amount of bone formed between the adenoviral and lentiviral groups. Lentiviral-mediated delivery of BMP-2 can induce long term in vitro and in vivo gene expression, which may be beneficial when developing tissue engineering strategies to heal large bone defects or defects with a compromised biologic environment. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1709,1721, 2006 [source] Influence of chitosan crosslinking on bitterness of mefloquine hydrochloride microparticles using central composite designJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2009Punit P. Shah Abstract The present work examines the influence of various process and product parameters on mefloquine hydrochloride (MFL) entrapped in crosslinked chitosan microparticles for masking the bitterness. A central composite design (CCD) was employed to investigate the effect of three process and product variables, namely amount of MFL, chitosan and sodium hydroxide (crosslinking agent) on the incorporation efficiency, particle size, drug release at pH 6.8 and bitterness score. The microparticles were prepared by ionotropic gelation method, with a hardening time of 60 min. The optimum condition for process and product variables was evaluated using desirability function. The model is further cross validated for bias. The optimized microparticles were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the crosslinking of chitosan significantly affects incorporation efficiency, particle size, drug release and bitterness score. The bitterness score was decreased to zero compared to 3+ of pure MFL. It can be inferred that the proposed methodology can be used to prepare MFL microparticles for bitter taste masking. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:690,703, 2009 [source] A new single grating spectrograph for ultraviolet Raman scattering studiesJOURNAL OF RAMAN SPECTROSCOPY, Issue 5 2006Lutz Hecht Abstract A state-of-the-art single grating spectrograph for Raman scattering studies within the deep ultraviolet (DUV) region of the electromagnetic spectrum is discussed. It is based on a high throughput DUV version of a single-stage monochromator originally designed for use in the visible spectral region. Its key components are two identical, newly designed calcium fluoride camera lenses each consisting of five different individual optical elements. The first of these lenses collimates the Raman scattered DUV radiation entering the spectrometer through its entrance slit. The second lens focuses the collimated beam of dispersed Raman scattered DUV radiation emerging from a high-resolution reflection grating onto a charge coupled device (CCD) detector with enhanced DUV sensitivity. A novel high transmission edge filter is used as a blocking device for a sufficient rejection of the Rayleigh line generating a relatively sharp transmittance cutoff at a Stokes Raman wavenumber shift of about ,450 cm,1 employing 257 nm DUV excitation. Overall, this new spectrograph enables rapid collection of Stokes DUV Raman scattered photons at f/2 wide apertures with sufficiently large signal-to-noise ratios (SNRs) in relatively short acquisition times and with an effective spectral resolution of approximately ,6 cm,1. Backscattered Raman spectra of the following chemicals are presented as typical results illustrating the excellent performance characteristics of this new DUV spectrograph for a variety of experimental conditions within different scattering scenarios and for a relatively wide range of commonly used sample preparation techniques: neat cyclohexane, laboratory air, polycrystalline D -glucose, single crystal L -alanine and a dilute aqueous solution of 2,-deoxyadenosine. Copyright © 2005 John Wiley & Sons, Ltd. [source] On the use of CCD area detectors for high-resolution specular X-ray reflectivityJOURNAL OF SYNCHROTRON RADIATION, Issue 4 2006P. Fenter The use and application of charge coupled device (CCD) area detectors for high-resolution specular X-ray reflectivity is discussed. Direct comparison of high-resolution specular X-ray reflectivity data measured with CCD area detectors and traditional X-ray scintillator (`point') detectors demonstrates that the use of CCD detectors leads to a substantial (,30-fold) reduction in data acquisition rates because of the elimination of the need to scan the sample to distinguish signal from background. The angular resolution with a CCD detector is also improved by a factor of ,3. The ability to probe the large dynamic range inherent to high-resolution X-ray reflectivity data in the specular reflection geometry was demonstrated with measurements of the orthoclase (001), and ,-Al2O3 (012),water interfaces, with measured reflectivity signals varying by a factor of ,106 without the use of any beam attenuators. Statistical errors in the reflectivity signal are also derived and directly compared with the repeatability of the measurements. [source] CCD-based X-ray area detector for time-resolved diffraction experimentsJOURNAL OF SYNCHROTRON RADIATION, Issue 6 2004Naoto Yagi A fast X-ray area detector for diffraction, scattering and imaging experiments at microsecond to millisecond time resolution has been developed. The key element of the detector is a fast (291,frames,s,1) framing camera with three CCDs. A prism forms identical images on the CCDs and the frame rate is increased three times by reading them alternately. In order to convert X-rays into visible light that is detectable with the CCDs, an X-ray image intensifier is used. The camera can also be used with a high-resolution X-ray detector. In both cases it was found to be important to use a phosphor with a short decay time to fully make use of the high-speed framing capability of the camera. Preliminary results of a fibre diffraction experiment on a skeletal muscle and coronary angiography are presented. [source] Non-invasive monitoring of commonly used intraocular drugs against endophthalmitis by raman spectroscopyLASERS IN SURGERY AND MEDICINE, Issue 4 2003K. Hosseini MD Abstract Purpose To develop a non-contact and non-invasive method for quantification of the local concentration of certain antibiotic and antifungal drugs in the eye. Study Design/Materials and Methods An integrated CCD-based Raman spectroscopic system designed specifically for ophthalmic applications was used to non-invasively detect the presence of ceftazidime and amphotericin B in ocular media. Specific Raman signatures of the above named drugs were determined for various concentrations that were injected through a needle in the aqueous humor of rabbit eyes in vivo. Raman spectra were subsequently acquired by focusing an argon laser beam within the anterior chamber of the eye. Results Compared to ocular tissue, unique spectral features of ceftazidime appeared near 1,028, 1,506, 1,586, and 1,641 cm,1. Amphotericin B exhibited its characteristic peaks at 1,156.5 and 1,556 cm,1. The amplitude of the spectral peak corresponding to these drugs (acquired by 1 second exposure time and 25 mW of laser power) were determined to be linearly dependent on their local concentration in the anterior chamber of the eye. Conclusions Raman spectroscopy may offer an effective tool to non-invasively assess the local concentration of the delivered drugs within the ocular media. This technique potentially could be used to investigate the pharmacokinetics of intraocular drugs in vivo either from a releasing implant or a direct injection. Lasers Surg. Med. 32:265,270, 2003. © 2003 Wiley-Liss, Inc. [source] Application of a microfluidic device for counting of bacteriaLETTERS IN APPLIED MICROBIOLOGY, Issue 3 2006K.-I. Inatomi Abstract Aims:, To develop a miniaturized analytical system for counting of bacteria. Methods and Results:,Escherichia coli cells were used throughout the experiments. The system consists of a microfluidic chamber, a fluorescence microscope with a charge-coupled device (CCD) camera and syringe pumps. The chamber was made of a silicone rubber (30 × 30 mm and 4 mm high). The E. coli cells were flowed from a micro-nozzle fabricated in the chamber and detected with the CCD camera. The individual cells were indicated as signal peaks on a computer. The cell counts showed a good correlation compared with that of a conventional plate counting method, and results of the simultaneous detection of live and dead cells were also presented. Conclusions, Significance and Impact of the Study:, The system having a small disposable nozzle has the advantages for low cost and safe medical or environmental analysis, when compared with a conventional flow cytometer. This is the first step of the development of a one-chip microbe analyzer. [source] |