CB2 Receptor Agonists (cb2 + receptor_agonist)

Distribution by Scientific Domains


Selected Abstracts


Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington's disease

GLIA, Issue 11 2009
Onintza Sagredo
Abstract Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntington's disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild-type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX-42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor-, (TNF-,) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF-,. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD. © 2008 Wiley-Liss, Inc. [source]


Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats

NEUROGASTROENTEROLOGY & MOTILITY, Issue 10 2006
M. Sanson
Abstract, Activation of cannabinoid CB1 and CB2 receptors is known to attenuate nociception and hyperalgesia in somatic inflammatory conditions. The aim of this study was to determine whether cannabinoids modulate colonic sensitivity in basal and inflammatory conditions. The effects of CB1 and CB2 receptor agonists and antagonists on the abdominal contractile response to colorectal distension (CRD) in basal conditions and after 2,4,6-trinitrobenzenesulphonic acid-induced colitis were investigated. As previously described, colitis triggered a hypersensitivity to CRD. In basal conditions, both CB1 (WIN 55212-2) and CB2 (JWH 015) agonists reduced the abdominal response to CRD at a dose of 1 mg kg,1, i.p. Both compounds were active at a lower dose (0.1 mg kg,1) abolishing the hypersensitivity induced by colitis. Administered alone, CB1 (Rimonabant) and CB2 (SR 144528) receptor antagonists (10 mg kg,1) had no effect on basal sensitivity. In contrast, the CB1, but not the CB2, receptor antagonist enhanced colitis-induced hyperalgesia. It is concluded that colonic inflammation enhances the antinociceptive action of CB1 and CB2 receptor agonists, and activates an endogenous, CB1 receptor mediated, antinociceptive pathway. [source]


Constitutive activity of cannabinoid-2 (CB2) receptors plays an essential role in the protean agonism of (+)AM1241 and L768242

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2009
I Mancini
Background and purpose:, Cannabinoid-2 (CB2) receptor-selective agonists have shown anti-nociceptive activity in models of neuropathic and inflammatory pain, and the two agonists most widely used, (+/,)AM1241 [(2-iodo-5-nitrophenyl)-[1-(1-methylpiperidin-2-ylmethyl)-1H-indol-3-yl-methanone] and L768242 [(2,3-dichloro-phenyl)-[5-methoxy-2-methyl-3-(2-morpholin-4-yl-ethyl)-indol-1-yl]-methanone] (GW405833), have been suggested to be protean agonists. Here we investigated the role of the constitutive activity of CB2 receptors in (+)AM1241 and L768242 protean agonism. Experimental approach:, Pharmacological profiles of CB2 receptor ligands were evaluated in Chinese hamster ovary cells expressing recombinant human (hCB2) or rat (rCB2) receptors, by measuring modulation of cAMP. To assess the influence of constitutive activity on pharmacological profile, constitutive activity was abolished by pretreatment with AM630 [(6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl) methanone)], followed by extensive washing. Key results:, In cell lines expressing either hCB2 or rCB2 receptors, (+)AM1241 did not reverse forskolin stimulation of cAMP levels. Conversely, L768242 was an inverse agonist at both hCB2 and rCB2 receptors. Abolition of constitutive activity disclosed (+)AM1241 and L768242 agonist activity, while activity of CP55940 [5-(1,1-dimethylheptyl)-2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxy-propyl)-cyclohexyl]-phenol] was unaffected and AM630 became a neutral antagonist. In presence of constitutively active CB2 receptors, (+)AM1241 antagonized CP55940, but when constitutive activity was abolished, it acted as a partial agonist with additive or antagonistic behaviour, depending on concentration. Conclusions and implications:, These results show that (+)AM1241 and L768242 are protean agonists at both hCB2 and rCB2 receptors. Abolition of constitutive activity reveals the agonist activity of these compounds. Thus, differences between in vivo and in vitro profiles of CB2 receptor agonists could be due to different levels of constitutive activity in recombinant versus native CB2 receptors. [source]


In vivo effects of CB2 receptor-selective cannabinoids on the vasculature of normal and arthritic rat knee joints

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2008
J J McDougall
Background and purpose: Cannabinoids (CBs) are known to be vasoactive and to regulate tissue inflammation. The present study examined the in vivo vasomotor effects of the CB2 receptor agonists JWH015 and JWH133 in rat knee joints. The effect of acute and chronic joint inflammation on CB2 receptor-mediated responses was also tested. Experimental approach: Blood flow was assessed in rat knee joints by laser Doppler imaging both before and following topical administration of CB2 receptor agonists. Vasoactivity was measured in normal, acute kaolin/carrageenan inflamed and Freund's complete adjuvant chronically inflamed knees. Key results: In normal animals, JWH015 and JWH133 caused a concentration-dependent increase in synovial blood flow which in the case of JWH133 was blocked by the selective CB2 receptor antagonist AM630 as well as the transient receptor potential vanilloid-1 (TRPV1) antagonist SB366791. The vasodilator effect of JWH133 was significantly attenuated in both acute and chronically inflamed knees. Given alone, AM630 had no effect on joint blood flow. Conclusion and implications: In normal joints, the cannabinomimetic JWH133 causes hyperaemia via a CB2 and TRPV1 receptor mechanism. During acute and chronic inflammation, however, this vasodilatatory response is significantly attenuated. British Journal of Pharmacology (2008) 153, 358,366; doi:10.1038/sj.bjp.0707565; published online 5 November 2007 [source]