C. Vulgaris (c + vulgari)

Distribution by Scientific Domains


Selected Abstracts


Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008
Xiangping Nie
Abstract The effects of trichloroisocyanuric acid (TCCA) and ciprofloxacin (CPFX) on the freshwater alga Chlorella vulgaris were assessed by toxicity bioassays and by the values of biomarkers in phase I and phase II. The biomarkers included growth rate, concentration of chlorophyll a, activities of 7-ethoxyresorufin- O -dealkylases (EROD), glutathione S -transferase (GST), catalase (CAT), and total glutathione (GSH). Ciprofloxacin was a weaker growth inhibitor than TCCA but, at a concentration of greater than 12.5 mg/L, decreased the growth of C. vulgaris. Concentration of chlorophyll a showed a similar trend. The 96-h median effective concentration (EC50; i.e., 50% reduction in growth relative to the control) of CPFX was 20.6 mg/L. Trichloroisocyanuric acid was a strong growth inhibitor and, at concentrations of greater than 0.80 mg/L, caused 100% inhibition on 24-h exposure. The 96-h EC50 of TCCA was 0.313 mg/L. Ciprofloxacin and TCCA affected the phase I and phase II enzyme activities differently. On exposure to CPFX, both EROD and GSH decreased at low CPFX concentrations (<5.0 mg/L) and increased at high CPFX concentrations (>12.5 mg/L), and CAT and GST exhibited induction at low concentrations and inhibition at high concentrations. In TCCA exposure, GST activity was significantly stimulated, and GSH concentration was increased. Catalase activity increased only at TCCA concentrations of greater than 0.12 mg/L, and no change in EROD activity was observed. [source]


The effect of Calluna vulgaris cover on the performance and intake of ewes grazing hill pastures in northern Spain

GRASS & FORAGE SCIENCE, Issue 4 2000
K. Osoro
The effect of the proportion of Calluna vulgaris cover on diet composition, intake and performance of sheep grazing hill vegetation communities in northern Spain is examined. A total of 591 non-lactating Gallega ewes grazed for five consecutive grazing seasons (June to September) on replicated plots of hill pastures (1700 m.a.s.l.) composed principally of Festuca, Agrostis, Nardus and Calluna spp. but with different proportions of Calluna vulgaris cover, either 0·3 (C0·3) or 0·7 (C0·7) of the total area. In 1 year, twenty-eight ewes suckling single lambs also grazed the plots. The mean stocking density over the 5 years was 8·7 ewes ha,1. On treatment C0·3, daily liveweight gains (33 g d,1) of non-lactating ewes were significantly (P < 0·001) greater than on treatment C0·7 (12 g d,1). Likewise in lactating ewes the difference in mean daily liveweight change was 40 g d,1 (,5 vs. ,45 g d,1 for C0·3 and C0·7 treatments respectively; P < 0·001). Liveweight gains of lambs were only 80,100 g d,1 from June to August and lambs only maintained live weight during August and September. The effect of lactational status on liveweight changes was not significant. Liveweight gains of non-lactating ewes increased significantly (P < 0·001) from the first to the last year of the experiment on both treatments. The composition of the diet was significantly affected by treatment (P < 0·001), with a higher proportion of grass species on the C0·3 treatment and a higher digestibility of the diet in the first half of the grazing season (P < 0·001). The proportion of C. vulgaris in the diet was significantly (P < 0·001) higher on the C0·7 treatment and increased significantly (P < 0·001) from July to September on both treatments. There were no significant differences in the composition of the diet selected by lactating and non-lactating ewes. The results demonstrate that on hill vegetation communities, in which the grass components (Festuca rubra, Agrostis capillaris, and Nardus stricta) cover at least 0·3 of the area and on which the preferred grass component (Festuca and Agrostis spp.) is maintained at a sward height of at least 2·5 cm, non-lactating ewes can increase their live weight and body condition, but this increase is influenced by the proportion and quantity of species of grass in the diet, which is affected in turn by the species of grass available and their nutritive quality. However, ewes suckling lambs were not able to maintain their live weight and body condition except when Calluna cover was 0·3 and grass height was more than 3·5 cm. It is concluded that these indigenous vegetation communities can be used in sheep production systems to complement the use of improved pastures at other times of year. In particular, they can be utilized during the non-lactating period (summer) to increase body condition before the beginning of the mating period in autumn. [source]


ROLE OF GLUTAMATE DEHYDROGENASE AND GLUTAMINE SYNTHETASE IN CHLORELLA VULGARIS DURING ASSIMILATION OF AMMONIUM WHEN JOINTLY IMMOBILIZED WITH THE MICROALGAE-GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM BRASILENSE,

JOURNAL OF PHYCOLOGY, Issue 5 2008
Luz E. De-Bashan
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L,1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L,1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L,1 NH4+, but not at 8 mg · L,1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per-cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L,1 NH4+ was GDH activity per cell higher. [source]


DIEL RHYTHM OF ALGAL PHOSPHATE UPTAKE RATES IN P-LIMITED CYCLOSTATS AND SIMULATION OF ITS EFFECT ON GROWTH AND COMPETITION1

JOURNAL OF PHYCOLOGY, Issue 4 2002
Chi-Yong Ahn
Oscillations in the phosphate (Pi) uptake rates for three species of green algae were examined in a P-limited cyclostat. For Ankistrodesmus convolutus Corda and Chlorella vulgaris Beyerinck, the Pi uptake rates increased during the daytime and decreased at night. In contrast, Chlamydomonas sp. exhibited the opposite uptake pattern. Cell densities also oscillated under a light:dark cycle, dividing at a species-specific timing rather than continuously. In general, the cell densities exhibited an inverse relationship with the Pi uptake rates. A competition experiment between A. convolutus and C. vulgaris in a P-limited cyclostat resulted in the dominance of C. vulgaris, regardless of the relative initial cell concentrations. Chlorella vulgaris also dominated in a mixed culture with Chlamydomonas sp., irrespective of the initial seeding ratio and dilution rate. However, Chlamydomonas sp. and A. convolutus coexisted in the competition experiment with gradual decrease of Chlamydomonas sp. when equally inoculated. Mathematical expressions of the oscillations in the Pi uptake rate and species-specific cell division gate were used to develop a simulation model based on the Droop equation. The simulation results for each of the species conformed reasonably well to the experimental data. The results of the competition experiments also matched the competition simulation predictions quite well, although the experimental competition was generally more delayed than the simulations. In conclusion, the model simulation that incorporated the effect of diel rhythms in nutrient uptake clearly demonstrated that species diversity could be enhanced by different oscillation patterns in resource uptake, even under the condition of limitation by the same resource. [source]


EFFECTS OF BARLEY STRAW EXTRACT ON GROWTH OF FIVE SPECIES OF PLANKTONIC ALGAE

JOURNAL OF PHYCOLOGY, Issue 2001
Article first published online: 24 SEP 200
Holz, J. C.1, Fessler, C. J.2, Severn, A. A.1 & Hoagland, K. D.1 1School of Natural Resource Sciences, University of Nebraska, 103 Plant Industry Bldg., Lincoln, NE, 68583-0814; 2Biology Department, Nebraska Wesleyan University, 5000 St. Paul Ave., Lincoln, NE, 68504; Phone: 402-472-6648; Fax: 402-472-2964 The effects of exposure to barley straw extract and the timing of exposure on the growth of four common cyanophyte species and one species of green algae were investigated in two laboratory experiments. Clonal cultures of Anabaena cylindrica, Cylindrospermum sp., Gloeocapsa sp., Eucapsis sp., and Chlorella vulgaris were obtained from culture collections. In both experiments, the algae were cultured in Guillard's WC medium at 20 °C on a 12:12 L/D photoperiod. In the first experiment, the algae were dosed with four concentrations of barley straw extract at the beginning of the experiment (day 0) and growth was monitored every second day using fluorometric detection of chlorophyll a for 14 d. In the second experiment, the algae were dosed with the same extract concentrations, but the extract was not added until the algae were in exponential growth phase (day 6). Both experiments also had control treatments (i.e. no extract) and each extract and control treatment was replicated five times. Growth of C. vulgaris was inhibited by all doses in both experiments, but inhibition was 22% greater when the extract was added on day 0. Growth Gleocapsa sp. was slightly inhibited by all doses when the extract was added on day 0, but not when it was added on day 6. No other species were inhibited, regardless of dose or timing of dose. The results of this study and other bioassay studies suggest that differential susceptibility to barley straw among algae is common and may reduce the effectiveness of barley straw as an algal control technique. [source]


Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae

NEW PHYTOLOGIST, Issue 3 2002
Sergei G. Sokolovski
Summary ,,Ericoid mycorrhizas are believed to improve N nutrition of many ericaceous plant species that typically occur in habitats with impoverished nutrient status, by releasing amino acids from organic N forms. Despite the ubiquity of mycorrhizal formation the mechanisms and regulation of nutrient transport in mycorrhizal associations are poorly understood. ,,We used an electrophysiological approach to study how amino acid transport characteristics of Calluna vulgaris were affected by colonization with the ericoid mycorrhiza fungus Hymenoscyphus ericae . ,,Both the Vmax and Km parameters of amino acid uptake were affected by fungal colonization in a manner consistent with an increased availability of amino acid to the plant. ,,The ecophysiological significance of altered amino acid transport in colonized root cells of C. vulgaris is discussed. [source]


Simple assay for antitumour immunoactive glycoprotein derived from Chlorella vulgaris strain CK22 using ELISA

PHYTOTHERAPY RESEARCH, Issue 6 2002
Kiyoshi Noda
Abstract A quantitative ELISA system was developed using a monoclonal antibody (MAb) specific for an antitumour immunoactive glycoprotein (CVS) derived from C. vulgaris strain CK22. The full measuring range of the assay extends from 0.63 to 10.0,ng/mL of CVS. Although no cross-reaction was observed to proteins tested or other biological response modifiers (BRMs) derived from different sources, cross-reactions were found with culture supernatants from two other strains of C. vulgaris having a strong antitumour immunoactivity. Treatment of CVS with protease, acid or alkali weakened or completely eliminated the reactivity against the MAb and also its antitumour immunoactivities. This ELISA system is suitable for the biologically active form of CVS derived from C. vulgaris strain CK22 and related immunoactive strains. Copyright © 2002 John Wiley & Sons, Ltd. [source]