C Uptake (c + uptake)

Distribution by Scientific Domains


Selected Abstracts


Increasing CO2 from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation

GLOBAL CHANGE BIOLOGY, Issue 8 2006
H. WAYNE POLLEY
Abstract Respiration (carbon efflux) by terrestrial ecosystems is a major component of the global carbon (C) cycle, but the response of C efflux to atmospheric CO2 enrichment remains uncertain. Respiration may respond directly to an increase in the availability of C substrates at high CO2, but also may be affected indirectly by a CO2 -mediated alteration in the amount by which respiration changes per unit of change in temperature or C uptake (sensitivity of respiration to temperature or C uptake). We measured CO2 fluxes continuously during the final 2 years of a 4-year experiment on C3/C4 grassland that was exposed to a 200,560 ,mol mol,1 CO2 gradient. Flux measurements were used to determine whether CO2 treatment affected nighttime respiration rates and the response of ecosystem respiration to seasonal changes in net C uptake and air temperature. Increasing CO2 from subambient to elevated concentrations stimulated grassland respiration at night by increasing the net amount of C fixed during daylight and by increasing either the sensitivity of C efflux to daily changes in C fixation or the respiration rate in the absence of C uptake (basal ecosystem respiration rate). These latter two changes contributed to a 30,47% increase in the ratio of nighttime respiration to daytime net C influx as CO2 increased from subamient to elevated concentrations. Daily changes in net C uptake were highly correlated with variation in temperature, meaning that the shared contribution of C uptake and temperature in explaining variance in respiration rates was large. Statistically controlling for collinearity between temperature and C uptake reduced the effect of a given change in C influx on respiration. Conversely, CO2 treatment did not affect the response of grassland respiration to seasonal variation in temperature. Elevating CO2 concentration increased grassland respiration rates by increasing both net C input and respiration per unit of C input. A better understanding of how C efflux varies with substrate supply thus may be required to accurately assess the C balance of terrestrial ecosystems. [source]


CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming

GLOBAL CHANGE BIOLOGY, Issue 12 2004
Jeffrey M. Welker
Abstract Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID-,) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long-term (9 years) warmed (,2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2 -C m,2 season,1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ,10%, especially in the first half of the summer. During the ,70 days growing season (mid-June,mid-August), the dry and wet tundra ecosystems were net CO2 -C sinks (30 and 67 g C m,2 season,1, respectively) and the mesic ecosystem was a net C source (58 g C m,2 season,1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ,12% in dry tundra, but reduced net C uptake by ,20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long-term warming with ,30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m,2 season,1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long-term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long-term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2 -C exchange rates ranged from losses of 64 g C m,2 yr,1 to gains of 55 g C m,2 yr,1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests. [source]


Poster Sessions CP10: Blood,Brain Barrier

JOURNAL OF NEUROCHEMISTRY, Issue 2002
M. A. García
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium-AA cotransporters. Recently, two different isoforms of sodium-vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+ -dependent l -ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 ,m and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT,PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area. Acknowledgements:, Supported by Grands FONDECYT 1010843 and DIUC-GIA 201.034.006-1.4 from Concepción University. [source]


Consequences of shrub expansion in mesic grassland: Resource alterations and graminoid responses

JOURNAL OF VEGETATION SCIENCE, Issue 4 2003
Michelle S. Lett
Anon. (1986) Abstract. In the mesic grasslands of the central United States, the shrub Cornus drummondii has undergone widespread expansion in the absence of recurrent fire. We quantified alterations in light, water and N caused by C. drummondii expansion in tall-grass prairie and assessed the hypothesis that these alterations are consistent with models of resource enrichment by woody plants. Responses in graminoid species, particularly the dominant C4 grass Andropogon gerardii, were concurrently evaluated. We also removed established shrub islands to quantify their legacy effect on resource availability and assess the capability of this grassland to recover in sites formerly dominated by woody plants. The primary effect of shrub expansion on resource availability was an 87% reduction in light available to the herbaceous understorey. This reduced C uptake and N use efficiency in A. gerardii and lowered graminoid cover and ANPP at the grass-shrub ecotone relative to undisturbed grassland. Shrub removal created a pulse in light and N availability, eliciting high C gain in A. gerardii in the first year after removal. By year two, light and N availability within shrub removal areas returned to levels typical of grassland, as had graminoid cover and ANPP were similar to those in open grassland. Recovery within central areas of shrub removal sites lagged behind that at the former grass-shrub ecotone. These results indicate that the apparent alternative stable state of C. drummondii dominance in tall-grass prairie is biotically maintained and driven by reductions in light, rather than resource enrichment. Within areas of shrub removal, the legacy effect of C. drummondii dominance is manifest primarily through the loss of rhizomes of the dominant grasses, rather than any long-term changes in resource availability. C. drummondii removal facilitates grassland recovery, but the effort required to initiate this transition is a significant cost of woody plant expansion in mesic grasslands. Prevention of woody plant expansion in remnant tall-grass prairies is, therefore, a preferred management option. [source]


Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi

NEW PHYTOLOGIST, Issue 1 2005
Mayra E. Gavito
Summary ,,In this study we investigated the effects of temperature on fungal growth and tested whether the differences in fungal growth were related to the effects of temperature on carbon movement to, or within, the fungus. ,,Growth curves and C uptake-transfer-translocation measurements were obtained for three arbuscular mycorrhizal fungi (AMF) isolates cultured within a 6,30°C temperature range. A series of experiments with a model fungal isolate, Glomus intraradices, was used to examine the effects of temperature on lipid body and 33P movement, and to investigate the role of acclimation and incubation time. ,,Temperature effects on AMF growth were both direct and indirect because, despite clear independent root and AMF growth responses in some cases, the uptake and translocation of 13C was also affected within the temperature range tested. Root C uptake and, to a lesser extent, C translocation in the fungus, were reduced by low temperatures (< 18°C). Uptake and translocation of 33P by fungal hyphae were, by contrast, similar between 10 and 25°C. ,,We conclude that temperature, between 6 and 18°C, reduces AMF growth, and that C movement to the fungus is involved in this response. [source]