C. Reinhardtii (c + reinhardtii)

Distribution by Scientific Domains


Selected Abstracts


EVIDENCE FOR A SPECIALIZED LOCALIZATION OF THE CHLOROPLAST ATP-SYNTHASE SUBUNITS ,, ,, AND , IN THE EYESPOT APPARATUS OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE),

JOURNAL OF PHYCOLOGY, Issue 2 2007
Melanie Schmidt
The eyespot apparatus (EA) of Chlamydomonas reinhardtii P. A. Dang. consists of two layers of carotenoid-rich lipid globules subtended by thylakoids. The outermost globule layer is additionally associated with the chloroplast envelope membranes and the plasma membrane. In a recent proteomic approach, we identified 202 proteins from isolated EAs of C. reinhardtii via at least two peptides, including, for example, structural components, signalling-related proteins, and photosynthetic-related membrane proteins. Here, we have analyzed the proteins of the EA with regard to their topological distribution using thermolysin to find out whether the arrangement of globules and membranes provides protection mechanisms for some of them. From about 230 protein spots separated on two-dimensional gels, the majority were degraded by thermolysin. Five major protein spots were protected against the action of this protease. These proteins and some that were degradable were identified by mass spectrometry. Surprisingly, the thermolysin-resistant proteins represented the , and , subunits of the soluble CF1 complex of the chloroplast ATP synthase. Degradable proteins included typical membrane proteins like LHCs, demonstrating that thermolysin is not in general sterically prevented by the EA structure from reaching membrane-associated proteins. A control experiment showed that the CF1 complex of thylakoids is efficiently degraded by thermolysin. Blue native PAGE of thermolysin-treated EAs followed by SDS-PAGE revealed that the , and , subunits are present in conjunction with the , subunit in a thermolysin-resistant complex. These results provide strong evidence that a significant proportion of these ATP-synthase subunits have a specialized localization and function within the EA of C. reinhardtii. [source]


THE ANTARCTIC PSYCHROPHILE, CHLAMYDOMONAS RAUDENSIS ETTL (UWO241) (CHLOROPHYCEAE, CHLOROPHYTA), EXHIBITS A LIMITED CAPACITY TO PHOTOACCLIMATE TO RED LIGHT,

JOURNAL OF PHYCOLOGY, Issue 4 2005
Rachael M. Morgan-Kiss
The psychrophilic Antarctic alga, Chlamydomonas raudensis Ettl (UWO241), grows under an extreme environment of low temperature and low irradiance of a limited spectral quality (blue-green). We investigated the ability of C. raudensis to acclimate to long-term imbalances in excitation caused by light quality through adjustments in photosystem stoichiometry. Log-phase cultures of C. raudensis and C. reinhardtii grown under white light were shifted to either blue or red light for 12 h. Previously, we reported that C. raudensis lacks the ability to redistribute light energy via the short-term mechanism of state transitions. However, similar to the model of mesophilic alga, C. reinhardtii, the psychrophile retained the capacity for long-term adjustment in energy distribution between PSI and PSII by modulating the levels of PSI reaction center polypeptides, PsaA/PsaB, with minimal changes in the content of the PSII polypeptide, D1, in response to changes in light quality. The functional consequences of the modulation in PSI/PSII stoichiometry in the psychrophile were distinct from those observed in C. reinhardtii. Exposure of C. raudensis to red light caused 1) an inhibition of growth and photosynthetic rates, 2) an increased reduction state of the intersystem plastoquinone pool with concomitant increases in nonphotochemical quenching, 3) an uncoupling of the major light-harvesting complex from the PSII core, and 4) differential thylakoid protein phosphorylation profiles compared with C. reinhardtii. We conclude that the characteristic low levels of PSI relative to PSII set the limit in the capacity of C. raudensis to photoacclimate to an environment enriched in red light. [source]


ISOLATION AND CHARACTERIZATION OF A CELL WALL-DEFECTIVE MUTANT OF CHLAMYDOMONAS MONOICA (CHLOROPHYTA),

JOURNAL OF PHYCOLOGY, Issue 6 2003
Cesar Fuentes
Cell wall,defective strains of Chlamydomonas have played an important role in the development of transformation protocols for introducing exogenous DNA (foreign genes or cloned Chlamydomonas genes) into C. reinhardtii. To promote the development of similar protocols for transformation of the distantly related homothallic species, C. monoica, we used UV mutagenesis to obtain a mutant strain with a defective cell wall. The mutant, cw-1, was first identified on the basis of irregular colony shape and was subsequently shown to have reduced plating efficiency and increased sensitivity to lysis by a non-ionic detergent as compared with wild-type cells. Tetrad analysis of crosses involving the cw-1 mutant confirmed 2:2 segregation of the cw:cw+ phenotypes, indicating that the wall defect resulted from mutation of a single nuclear gene. The phenotype showed incomplete penetrance and variable expressivity. Although some cells had apparently normal cell walls as viewed by TEM, many cells of the cw-1 strain had broken cell walls and others were protoplasts completely devoid of a cell wall. Several cw-1 isolates obtained from crosses involving the original mutant strain showed a marked enhancement of the mutant phenotype and may prove especially useful for future work involving somatic cell fusions or development of transformation protocols. [source]


Effects of sulfur limitation on photosystem II functioning in Chlamydomonas reinhardtii as probed by chlorophyll a fluorescence

PHYSIOLOGIA PLANTARUM, Issue 2 2006
Taras K. Antal
Chlorophyll fluorescence methods were applied to probe in vivo photosystem II (PSII) function in Chlamydomonas reinhardtii grown in sulfur-depleted media under aerobic conditions. The rates of oxygen evolution and dark reduction decreased during a 24-h incubation in sulfur-deficient medium, while the respiration rate increased. The analysis of chlorophyll fluorescence induction curves suggests that electron transport was perturbed on both the acceptor and donor sides of PSII. Light-induced violaxanthin de-epoxidation and non-photochemical fluorescence quenching were suppressed, owing to dark accumulation of zeaxanthin. Also sulfur-deprived cells showed elevated concentrations of violaxanthin and lutein. Sulfur deprivation stimulated a pronounced (three- to four-fold) increase in chlorophyll a fluorescence intensity (parameters Fo and Fm), probably due to greater light absorption by carotenoids and changes in the excitation energy transfer and deactivation in PSII of C. reinhardtii. [source]


Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii

THE PLANT JOURNAL, Issue 1 2006
Chung-Soon Im
Summary Phototropin (PHOT) is a photoreceptor involved in a variety of blue-light-elicited physiological processes including phototropism, chloroplast movement and stomatal opening in plants. The work presented here tests whether PHOT is involved in expression of light-regulated genes in Chlamydomonas reinhardtii. When C. reinhardtii was transferred from the dark to very low-fluence rate white light, there was a substantial increase in the level of transcripts encoding glutamate-1-semialdehyde aminotransferase (GSAT), phytoene desaturase (PDS) and light-harvesting polypeptides (e.g. LHCBM6). Increased levels of these transcripts were also elicited by low-intensity blue light, and this blue-light stimulation was suppressed in three different RNAi strains that synthesize low levels of PHOT. The levels of GSAT and LHCBM6 transcripts also increased following exposure of algal cells to low-intensity red light (RL). The red-light-dependent increase in transcript abundance was not affected by the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, implying that the influence of RL on transcript accumulation was not controlled by cytoplasmic redox conditions, and that a red-light photoreceptor(s) may be involved in regulating the levels of transcripts from specific photosynthesis-related genes in C. reinhardtii. Interestingly, elevated GSAT and LHCBM6 transcript levels in RL were significantly reduced in the PHOT RNAi strains, which raises the possibility of co-action between blue and RL signaling pathways. Microarray experiments indicated that the levels of several transcripts for photosystem (PS) I and II polypeptides were also modulated by PHOT. These data suggest that, in C. reinhardtii, (i) PHOT is involved in blue-light-mediated changes in transcript accumulation, (ii) synchronization of the synthesis of chlorophylls (Chl), carotenoids, Chl-binding proteins and other components of the photosynthetic apparatus is achieved, at least in part, through PHOT-mediated signaling, and (iii) a red-light photoreceptor can also influence levels of certain transcripts associated with photosynthetic function, although its action requires normal levels of PHOT. [source]


Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast

THE PLANT JOURNAL, Issue 6 2002
Scott Franklin
Summary Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5,- and 3,-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5,- and 3,-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate ,80-fold more GFP than GFPncb -transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5,- and 3,-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression. [source]


Crystallographic study of wild-type carbonic anhydrase ,CA1 from Chlamydomonas reinhardtii

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2010
Kaoru Suzuki
Carbonic anhydrases (CAs) are ubiquitously distributed and are grouped into three structurally independent classes (,CA, ,CA and ,CA). Most ,CA enzymes are monomeric, but ,CA1 from Chlamydomonas reinhardtii is a dimer that is uniquely stabilized by disulfide bonds. In addition, during maturation an internal peptide of 35 residues is removed and three asparagine residues are glycosylated. In order to obtain insight into the effects of these structural features on CA function, wild-type C. reinhardtii,CA1 has been crystallized in space group P65, with unit-cell parameters a = b = 134.3, c = 120.2,Å. The crystal diffracted to 1.88,Å resolution and a preliminary solution of its crystal structure has been obtained by the MAD method. [source]


Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors

BIOTECHNOLOGY PROGRESS, Issue 2 2010
Hosni Takache
Abstract The validity of a simple, reliable, and useful recently published formula enabling to calculate the maximum volumetric biomass productivities in photobioreactors (PBRs) was investigated through the cultivation of the microalga Chlamydomonas reinhardtii. Experimental maximum kinetic performances accurately obtained in two different, artificially lightened torus-plane and cylindrical reactors having the same specific illuminated area confirmed the availability, power, and robustness of such formula. The predictive kinetic parameters previously proposed and validated with cyanobacteria were then proved general and robust in case of eukaryotic microalgae, as postulated in the founding article. In this case, an additional criterion requiring rigorous control of the working illuminated fraction , = 1 ± (15%) inside the reactor is demonstrated. For this, the usefulness and reliability of a generalized two-flux model accurately describing the radiation field inside turbid culture media of C. reinhardtii were also established in this article. These important results contribute to identify the main engineering factors governing light-limited PBRs functioning and then to clarify some misinterpretations widely reported in the literature. Together with the referenced previous work, this article gives a framework toward optimal conception of PBRs on a strong physical basis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Modeling and Optimization of Photosynthetic Hydrogen Gas Production by Green Alga Chlamydomonas reinhardtii in Sulfur-Deprived Circumstance

BIOTECHNOLOGY PROGRESS, Issue 2 2006
Ji Hye Jo
Biological hydrogen production by the green alga Chlamydomonas reinhardtii under sulfur-deprived conditions has attracted great interest due to the fundamental and practical importance of the process. The photosynthetic hydrogen production rate is dependent on various factors such as strain type, nutrient composition, temperature, pH, and light intensity. In this study, physicochemical factors affecting biological hydrogen production by C. reinhardtii were evaluated with response surface methodology (RSM). First, the maximum specific growth rate of the alga associated with simultaneous changes of ammonium, phosphate, and sulfate concentrations in the culture medium were investigated. The optimum conditions were determined as NH4+ 8.00 mM, PO43, 1.11 mM, and SO42, 0.79 mM in Tris-acetate-phosphate (TAP) medium. The maximum specific growth rate with the optimum nutrient concentrations was 0.0373 h,1. Then, the hydrogen production rate of C. reinhardtii under sulfur-deprivation conditions was investigated by simultaneously changing two nutrient concentrations and pH in the medium. The maximum hydrogen production was 2.152 mL of H2 for a 10-mL culture of alga with density of 6 × 106 cells mL,1 for 96 h under conditions of NH4+ 9.20 mM, PO43, 2.09 mM, and pH 7.00. The obtained hydrogen production rate was approximately 1.55 times higher than that with the typical TAP medium under sulfur deficiency. [source]