| |||
C. Dubia (c + dubia)
Selected AbstractsEffects of dietborne copper and silver on reproduction by Ceriodaphnia dubia,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2009Jason M. Kolts Abstract Recent studies have indicated the potential for dietborne metals as an important exposure pathway for metal toxicity in freshwater organisms. We conducted a study in which freshwater cladocerans (Ceriodaphnia dubia) were fed green algae (either Pseudokirchneriella subcapitata or Chlorella vulgaris) that were grown in Ag- or Cu-contaminated media. In one series of toxicity tests patterned after the U.S. Environmental Protection Agency's three-brood C. dubia chronic toxicity test, we exposed C. dubia to waterborne Ag or Cu while feeding them normal amounts of uncontaminated yeast,Cerophyll®,trout chow (YCT) slurry and either algae grown in standard media or algae grown in standard media supplemented with Ag or Cu (added as AgNO3 or CuSO4·5H2O). These parallel tests demonstrated that dietborne metal did not contribute to survival or reproduction effects beyond the effects caused by waterborne metal alone. We also conducted dietborne-only toxicity tests patterned after two other recently published experimental designs in which 1) C. dubia were fed only metal-contaminated algae for 4 h, transferred to fresh water, and fed uncontaminated algae and YCT slurry for the duration of the three-brood test or 2) C. dubia were fed standard amounts of metal-contaminated algae and uncontaminated YCT slurry for the entire three-brood test. In contrast to previous studies, we did not find consistent dietborne metal toxicity or standard concentration,response relationships in those two experiments. Instead, among-experiment variation in intracellular partitioning of metals in the algae fed to the C. dubia, among-laboratory differences in experimental procedures, selective feeding by C. dubia to avoid metal-contaminated algae, an interaction between reproductive status of the C. dubia and dietborne metal concentration, or a combination of these might help explain the apparently inconsistent results. [source] Dissolved fraction of standard laboratory cladoceran food alters toxicity of waterborne silver to Ceriodaphnia dubia,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2008Jason M. Kolts Abstract The biotic ligand model (BLM) for the acute toxicity of cationic metals to aquatic organisms incorporates the toxicity-modifying effects of dissolved organic matter (DOM), but the default parameterization (i.e., assuming 10% of DOM is humic acid) does not differentiate DOM from different sources. We exposed a cladoceran (Ceriodaphnia dubia) to Ag in the presence of DOM from filtered YCT (standard yeast,Cerophyll®,trout chow food recommended by the U.S. Environmental Protection Agency [EPA] for cladocerans), from the Suwannee River (GA, USA; relatively little anthropogenic input), and from the Desjardins Canal in Hamilton (ON, Canada; receives treated municipal wastewater effluent). In all three treatments, the dissolved organic carbon (DOC) concentration was 2 mg/L (the concentration following addition of YCT slurry at the U.S. EPA,recommended volume ratio). The average 48-h median effects concentration (EC50) ratios for dissolved Ag in the presence and absence of DOM [i.e., (EC50 with DOM)/(EC50 without DOM)] were as follows: Suwannee River, 1.6; Desjardins Canal, 2.2; and YCT filtrate, 26.8. Therefore, YCT filtrate provided much more protection against Ag toxicity than that provided by DOM from the surface waters. The major spectral characteristic that differentiated YCT filtrate from the other two types of DOM was a strong tryptophan peak in the excitation,emission matrix for YCT. These results have important implications for interpreting Ag toxicity tests in which organisms are fed YCT, and they suggest BLM-calculated toxicity predictions might be improved by incorporating specific chemical constituents or surrogate indices of DOM. Another component of the protective effect against Ag toxicity, however, might be that the dissolved fraction of YCT served as an energy and/or nutrient source for C. dubia. [source] Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceansENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2007David John Soucek Abstract Based on previous observations that hardness (and potentially chloride) influences sodium sulfate toxicity, the objective of the current study was to quantify the influence of both chloride and water hardness on acute toxicity to Hyalella azteca and Ceriodaphnia dubia. In addition, observed toxicity data from the present study were compared to toxicity predictions by the salinity/toxicity relationship (STR) model. Hardness had a strong influence on sulfate toxicity that was similar for both crustaceans, and nearly identical median lethal concentration (LC50)/hardness slopes were observed for the two species over the tested range. Chloride had a strong but variable influence on sulfate acute toxicity, depending on the species tested and the concentration range. At lower chloride concentrations, LC50s for H. azteca strongly were correlated positively with chloride concentration, although chloride did not affect the toxicity of sodium sulfate to C. dubia. The opposite trend was observed over the higher range of chloride concentrations where there was a negative correlation between chloride concentration and sulfate LC50 for both species. The widely ranging values for both species and a high correlation between LC50s in terms of sulfate and conductivity suggested that, whether based on sulfate, conductivity, or total dissolved solids (TDS), attempts at water quality standard development should incorporate the fact that water quality parameters such as hardness and chloride strongly influence the toxicity of high TDS solutions. The STR model predicted toxicity to C. dubia relatively well when chloride was variable and hardness fixed at approximately 100 mg/L; however, the model did not account for the protective effect of hardness on major ion/TDS toxicity. [source] Application of toxicity identification evaluation to sediment in a highly contaminated water reservoir in southeastern BrazilENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2006Rosalina P. A. Araújo Abstract Rasgão Reservoir, located close to the Metropolitan region of São Paulo, Brazil, has been analyzed previously, and its sediment was found to be highly toxic, with high levels of metals and polycyclic aromatic hydrocarbons and a complete absence of benthic life. Polychlorinated biphenyls also were present, as was mutagenic activity, detected with the Salmonella/microsome assay. Because of the extremely complex mixture of contaminants in these sediments, a toxicity identification evaluation was performed on the pore water and elutriate using Ceriodaphnia dubia and Vibrio fischeri. Toxicity characterization, identification, and confirmation procedures were performed in one representative sample of the reservoir, and the results indicated that ammonia was the main cause of the toxicity detected with C. dubia in both sediment pore water and elutriate. Chemical analysis corroborated this observation by revealing un-ionized ammonia concentrations as high as 5.14 mg/L in pore water and 2.06 mg/L in elutriate. These high ammonia levels masked possible toxicity caused by other classes of compounds. The toxicity detected with V. fischeri decreased with the time of sample storage and was related to the organic fraction of the pore water and the elutriate, in which compounds such as benzothiazole and nonylphenol were detected. [source] Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnidsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2006Joseph R. Shaw Abstract Investigations were conducted to determine acute (48-h) effects of cadmium and zinc presented individually and in combination on Ceriodaphnia dubia, Daphnia magna, Daphnia ambigua, and Daphnia pulex. Toxicity tests were conducted with single metals to determine lethal effects concentrations (lethal concentrations predicted for a given percent [x] of a population, LCx value). These were used to derive metal combinations that spanned a range of effects and included mixtures of LC15, LC50, and LC85 values calculated for each metal and species. In single-metal tests, 48-h LC50 values ranged from 0.09 to 0.9 ,mol/L and 4 to 12.54 ,mol/L for cadmium and zinc, respectively. For each metal, D. magna was most tolerant and showed a different pattern of response from all others as determined by slope of concentration,response curves. In the combined metal treatments, all daphnids showed a similar pattern of response when LC15 concentrations were combined. This trend continued with few exceptions when LC15 concentrations of cadmium were combined with LC50 or LC85 values for zinc. However, when this treatment was reversed (LC15, zinc + LC50 or LC85, cadmium), responses of all species except D. magna indicated less-than-additive effects. For C. dubia, a near complete reduction in toxicity was observed when the LC15 for zinc was combined with LC85 for cadmium. Multimetal tests with D. magna did not differ from additive. Collectively, these studies suggest that D. magna may not be representative of other cladocerans. [source] Development of toxicity identification evaluation procedures for pyrethroid detection using esterase activityENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2004Craig E. Wheelock Abstract Recent agrochemical usage patterns suggest that the use of organophosphate (OP) pesticides will decrease, resulting in a concomitant increase in pyrethroid usage. Pyrethroids are known for their potential toxicity to aquatic invertebrates and many fish species. Current toxicity identification evaluation (TIE) techniques are able to detect OPs, but have not been optimized for pyrethroids. Organophosphate identification methods depend upon the use of piperonyl butoxide (PBO) to identify OP-induced toxicity. However, the use of PBO in TIE assays will be confounded by the co-occurrence of OPs and pyrethroids in receiving waters. It is necessary, therefore, to develop new TIE procedures for pyrethroids. This study evaluated the use of a pyrethroid-specific antibody, PBO, and carboxylesterase activity to identify pyrethroid toxicity in aquatic toxicity testing with Ceriodaphnia dubia. The antibody caused significant mortality to the C. dubia. Piperonyl butoxide synergized pyrethroid-associated toxicity, but this effect may be difficult to interpret in the presence of OPs and pyrethroids. Carboxylesterase activity removed pyrethroid-associated toxicity in a dose-dependent manner and did not compromise OP toxicity, suggesting that carboxylesterase treatment will not interfere with TIE OP detection methods. These results indicate that the addition of carboxylesterase to TIE procedures can be used to detect pyrethroids in aquatic samples. [source] Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubiaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004Theodore B. Henry Abstract Contamination of surface waters by pharmaceutical chemicals has raised concern among environmental scientists because of the potential for negative effects on aquatic organisms. Of particular importance are pharmaceutical compounds that affect the nervous or endocrine systems because effects on aquatic organisms are possible at low environmental concentrations. Selective serotonin reuptake inhibitors (SSRIs) are drugs used to treat clinical depression in humans, and have been detected in low concentrations in surface waters. In this investigation, the acute and chronic toxicity of five SSRIs (fluoxetine, Prozac®; fluvoxamine, Luvox®; paroxetine, Paxil®; citalopram, Celexa®; and sertraline, Zoloft®) were evaluated in the daphnid Ceriodaphnia dubia. For each SSRI, the 48-h median lethal concentration (LC50) was determined in three static tests with neonate C. dubia, and chronic (8-d) tests were conducted to determine no-observable-effect concentrations (NOEC) and lowest-observable-effect concentrations (LOEC) for reproduction endpoints. The 48-h LC50 for the SSRIs ranged from 0.12 to 3.90 mg/L and the order of toxicity of the compounds was (lowest to highest): Citalopram, fluvoxamine, paroxetine, fluoxetine, sertraline. Mortality data for the 8-d chronic tests were similar to the 48-h acute data. The SSRIs negatively affected C. dubia reproduction by reducing the number of neonates per female, and for some SSRIs, by reducing the number of broods per female. For sertraline, the most toxic SSRI, the LOEC for the number of neonates per female was 0.045 mg/L and the NOEC was 0.009 mg/L. Results indicate that SSRIs can impact survival and reproduction of C. dubia; however, only at concentrations that are considerably higher than those expected in the environment. [source] Wastewater treatment polymers identified as the toxic component of a diamond mine effluentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004Simone J. C. de Rosemond Abstract The EkatiÔ Diamond Mine, located approximately 300 km northeast of Yellowknife in Canada's Northwest Territories, uses mechanical crushing and washing processes to extract diamonds from kimberlite ore. The processing plant's effluent contains kimberlite ore particles (,0.5 mm), wastewater, and two wastewater treatment polymers, a cationic polydiallydimethylammonium chloride (DADMAC) polymer and an anionic sodium acrylate polyacrylamide (PAM) polymer. A series of acute (48-h) and chronic (7-d) toxicity tests determined the processed kimberlite effluent (PKE) was chronically, but not acutely, toxic to Ceriodaphnia dubia. Reproduction of C. dubia was inhibited significantly at concentrations as low as 12.5% PKE. Toxicity identification evaluations (TIE) were initiated to identify the toxic component of PKE. Ethylenediaminetetraacetic acid (EDTA), sodium thiosulfate, aeration, and solid phase extraction with C-18 manipulations failed to reduce PKE toxicity. Toxicity was reduced significantly by pH adjustments to pH 3 or 11 followed by filtration. Toxicity testing with C. dubia determined that the cationic DADMAC polymer had a 48-h median lethal concentration (LC50) of 0.32 mg/L and 7-d median effective concentration (EC50) of 0.014 mg/L. The anionic PAM polymer had a 48-h LC50 of 218 mg/L. A weight-of-evidence approach, using the data obtained from the TIE, the polymer toxicity experiments, the estimated concentration of the cationic polymer in the kimberlite effluent, and the behavior of kimberlite minerals in pH-adjusted solutions provided sufficient evidence to identify the cationic DADMAC polymer as the toxic component of the diamond mine PKE. [source] In situ water and sediment toxicity in an agricultural watershedENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2004Bryn M. Phillips Abstract The Salinas River receives inputs from extensive farmlands before flowing into the Salinas River National Wildlife Refuge and the Monterey Bay National Marine Sanctuary (CA, USA). Previous monitoring using laboratory toxicity tests and chemical analyses identified toxic agricultural drain-water inputs in this system. Using caged daphnids (Ceriodaphnia dubia) and amphipods (Hyalella azteca), we investigated in situ toxicity at stations downstream from an agricultural drain relative to a reference station. A flow sensor indicated highly variable inputs from irrigation, and daily synoptic chemical analyses using enzyme-linked immunosorbent assay techniques demonstrated fluctuating concentrations of organophosphate pesticides. Test organism mortality in the field coincided with contaminant concentrations that exceeded chemical effect thresholds for the test species. Laboratory toxicity tests using C. dubia were comparable to results from field exposures, but tests with H. azteca were not. Laboratory exposures can be reasonable surrogates for field evaluations in this system, but they were less effective for assessing short-term temporal variability. Results from the field toxicity studies corroborated results of bioassessment surveys conducted as part of a concurrent study. Toxicity identification evaluations indicated that organophosphate pesticides caused toxicity to daphnids and that effects of suspended solids were negligible. [source] Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2003Brian S. Anderson Abstract The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non,metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system. [source] Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), ceriodaphnia dubia, and Daphnia magnaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2000George Scott Abstract Increasing concentrations of nitrate in surface water and groundwater are becoming a worldwide concern, yet little information has been published on toxicity of nitrate to common organisms used for toxicity testing. The acute and chronic toxicity of nitrate (NO3 -N) to Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas was investigated in 48-h to 17-d laboratory exposures. The 48-h median lethal concentration (LC50) of nitrate to C. dubia and D. magna neonates was 374 mg/L NO3 -N and 462 mg/L NO3 -N. The no-observed-effect concentration (NOEC) and the lowest-observed-effect concentration (LOEC) for neonate production in C. dubia were 21.3 and 42.6 mg/L NO3 -N, respectively. The NOEC and LOEC values for neonate production in D. magna were 358 and 717 mg/L NO3 -N, respectively. The 96-h LC50 for larval fathead minnows (P. promelas) was 1, 341 mg/L NO3 -N. The NOEC and LOEC for 7-d larval and 11-d embryo-larval growth tests were 358 and 717 mg/L NO3 -N, respectively. Additional exposure of breeding P. promelas and their fertilized eggs to nitrate did not increase susceptibility further. The LC50 values for all species tested were above ambient concentrations of nitrate reported for surface water. However, the LOEC for C. dubia was within the range of concentrations that could be found in streams draining areas under extensive agricultural cultivation. [source] Temperature-dependent development of the parasitoid Tachinaephagus zealandicus on five forensically important carrion fly speciesMEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2010S. C. VOSS The influences of temperature and host species on the development of the forensically important parasitoid Tachinaephagus zealandicus Ashmead (Hymenoptera: Encyrtidae) were studied at six constant temperatures in the range of 15,30°C. T. zealandicus completed development successfully between 15°C and 27°C on five species of Calliphoridae, Calliphora albifrontalis Malloch, Calliphora dubia Macquart, Lucilia sericata Meigen, Chrysomya rufifacies Macquart and Chrysomya megacephala Fabricius. No adult parasitoids emerged from any of the host species reared at 30°C. Temperature and host species significantly influenced development time, emergence success and progeny size. Development was significantly longer on Ch. megacephala and Ch. rufifacies at 18,24°C and significantly longer on Ch. rufifacies and C. albifrontalis at 15°C and 27°C. Parasitoid emergence success was greatest at 21°C, declined at the temperature extremes (15°C and 27°C) and was significantly lower on Ch. megacephala and Ch. rufifacies than on the three other host species. Progeny numbers per host pupa were highest at 21,24°C, declined on either side of this temperature range and were significantly lower on L. sericata, Ch. rufifacies and Ch. megacephala than on either C. dubia or C. albifrontalis. An effect of host species on sex ratio was only observed at 27°C, at which a higher proportion of T. zealandicus females emerged from Ch. megacephala and Ch. rufifacies than from the other host species. The thermal requirements for development (developmental thresholds, thermal constant, optimum temperature) of T. zealandicus in each host species were estimated using linear and non-linear models. Upper and lower developmental thresholds ranged between 29.90°C and 31.73°C, and 9.73°C and 10.08°C, respectively. The optimum temperature for development was estimated at between 25.81°C and 27.05°C. Given the significant effect of host species on development time, the use of parasitoid,host-specific developmental data in forensic application is recommended. [source] Functional response of Ameca splendens (Family Goodeidae) fed cladocerans during the early larval stageAQUACULTURE RESEARCH, Issue 14 2009Fabiola Peña-Aguado Abstract We studied the functional response of the goodeid Ameca splendens, an endangered species from rivers Ameca and Teuchitlán (Jalisco, Mexico), from birth until 8 weeks old. The cladocerans, Alona glabra adults, Simocephalus vetulus neonates, Ceriodaphnia dubia adults, Daphnia pulex juveniles and Moina macrocopa adults were used as prey. The prey densities, depending on the species, ranged between 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 16.0 and 32 ind. mL,1, with four replicates at each density. We found that all functional responses were Type II. During the feeding period of 30 min, the fish larvae consumed about 600 individuals of the smallest prey A. glabra (450 ,m). The consumption of larger prey (<1.0 mm) such as S. vetulus, C. dubia, D. pulex and M. macrocopa ranged between 150 and 200 prey larva,1 during the feeding trials. Our study shows that A. splendens reached maximal prey consumption at around 4 weeks of age, after which there was no increase in prey consumption during the feeding period with age until the end of the study period of 8 weeks. Our study indicates that prey digestion rather than handling time determines the functional response in this fish species and that M. macrocopa is most suited as live food for A. splendens. [source] |