C. Chinensis (c + chinensi)

Distribution by Scientific Domains


Selected Abstracts


Reproductive interference determines persistence and exclusion in species interactions

JOURNAL OF ANIMAL ECOLOGY, Issue 5 2009
Shigeki Kishi
Summary 1.,Reproductive interference is a negative interspecific sexual interaction that adversely affects the fitness of males and females during reproductive process. Theoretical studies suggest that because reproductive interference is characterized by positive frequency dependence it is far more likely to cause species exclusion than the density dependence of resource competition. However, the respective contributions of resource competition and reproductive interference to species exclusion, which have been frequently observed in many competition studies, remain unclear. 2.,We show that reproductive interference is a far more critical cause of species exclusion than resource competition in the competition between Callosobruchus bean weevil species. In competition experiments over several generations, we manipulated the initial relative abundance of the adzuki bean beetle, Callosobruchus chinensis, and the southern cowpea beetle, Callosobruchus maculatus. When the initial adult ratio of C. chinensis : C. maculatus were 6 : 2 and 4 : 4, C. chinensis excluded C. maculatus. However, when C. maculatus was four times more abundant than C. chinensis at the start, we observed the opposite outcome. 3.,A behavioural experiment using adults of the two species revealed asymmetric reproductive interference. The fecundity and longevity of C. maculatus females, but not those of C. chinensis females, decreased when the females were kept with heterospecific males. Fecundities of females of both species decreased as the number of heterospecific males increased. In contrast, resource competition at the larval stage resulted in higher survival of C. maculatus than of C. chinensis. 4.,These results suggest that the positive frequency-dependent effect of reproductive interference resulted in species exclusion, depending on the initial population ratio of the two species, and the asymmetry of the interference resulted in C. chinensis being dominant in this study, as in previous studies. Classical competition studies should be reviewed in light of this evidence for reproductive interference. [source]


Effects of maternal age on reproductive traits and fitness components of the offspring in the bruchid beetle, Callosobruchus chinensis (Coleoptera: Bruchidae)

PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2002
Shin-Ichi Yanagi
Abstract. In many insect species, the size and number of eggs decrease with maternal age. Thus, both the size and number of eggs must be considered to know the exact cost of reproduction with maternal age. The resource depletion hypothesis was examined in the bruchid beetle Callosobruchus chinensis. The hypothesis explains why the egg size decreases with maternal age based on the decline of the female's reproductive capacity. A decrease was found in reproductive effort (= egg size × the number of eggs) and the fitness component of offspring with maternal age. The effects of the female's nutritional status on the relationship between maternal age and the reproductive effort of females with and without food and water were also examined. The results indicate that the decrease in size and number of eggs with maternal age can be explained by the resource depletion hypothesis in C. chinensis. [source]


Antimicrobial and antioxidant activities of traditional Thai herbal remedies for aphthous ulcers

PHYTOTHERAPY RESEARCH, Issue 10 2010
Chantana Mekseepralard
Abstract Four medicinal plants (Quercus infectoria, Kaempferia galanga, Coptis chinensis and Glycyrrhiza uralensis) as well as one traditional Thai treatment for aphthous ulcers based on these four plants were tested for antimicrobial activity. MIC values for a range of bacteria and Candida albicans were determined, with both type strains and clinical isolates being used. Antioxidant activity was determined using the ABTS radical scavenging assay. Among the four plants, Q. infectoria showed antimicrobial activity against Staphylococcus aureus with an MIC of 0.41,mg/mL, while C. chinensis showed antifungal activity against C. albicans with an MIC of 6.25,mg/mL. Activity was also shown against a range of other organisms including Salmonella typhi, Serratia marcescens, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa and Enterococcus faecalis. The antimicrobial activity of the traditional aphthous ulcer preparation (a powder) was comparable to that for the individual plant extracts, however, incorporation of the powder into a gel formulation resulted in the loss of almost all activity. All extracts, with the exception of K. galanga, also showed good antioxidant activity. This study supports the traditional use of these plants and suggests that they may also be useful in the treatment of other infections. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V. nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics

PLANT BREEDING, Issue 1 2006
P. Somta
Abstract To facilitate transfer of bruchid resistance to azuki bean (Vigna angularis) from its relatives an interspecific mapping population was made between rice bean, V. umbellata, and the related wild species V. nakashimae. The V. umbellata parent is completely resistant and V. nakashimae is completely susceptible to the bruchid beetle pests, azuki bean weevil (Callosobruchus chinensis) and cowpea weevil (C. maculatus). There is very low cross compatibility between V. umbellata and azuki bean. Therefore, V. nakashimae, that crosses with both V. umbellata and V. angularis without the need for embryo rescue, is used as a bridging species. A genetic linkage map was constructed based on an interspecific F2 mapping population between V. umbellata and V. nakashimae consisting of 74 plants. A total of 175 DNA marker loci (74 RFLPs and 101 SSRs) were mapped on to 11 linkage groups spanning a total length of 652 cM. Segregation distortion was observed but only three markers were not linked to any linkage group due to severe segregation distortion. This interspecific genome map was compared with the genome map of azuki bean. Of 121 common markers on the two maps, 114 (94.2%) were located on the same linkage groups in both maps. The marker order was highly conserved between the two genome maps. Fifty F2 plants that produced sufficient seeds were used for quantitative trait locus (QTL) analysis and locating gene(s) for C. chinensis and C. maculatus resistance in V. umbellata. The resistance reaction of these F2 plants differed between C. chinensis and C. maculatus. Both resistances were quantitatively inherited with no F2 plants completely susceptible to C. chinensis or C. maculatus. One putative QTL for resistance to each of these bruchid species was located on different linkage groups. Other putative QTLs associated with resistance to both C. chinensis and C. maculatus were localized on the same linkage group 1. Linked markers associated with the bruchid-resistant QTL will facilitate their transfer to azuki bean breeding lines. [source]


Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry,

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2005
Min Ye
Phenolic compounds are the major bioactive constituents of the Chinese herbal drug Tu-Si-Zi, which is prepared from the seeds of Cuscuta chinensis. However, seeds of C. australis also are offered under the name of this drug in the herb market. In order to make a comparison of their chemical constituents, the phenolic compounds of these two Cuscuta species were analyzed by high-performance liquid chromatography/diode-array detection/electrospray ion trap tandem mass spectrometry (HPLC/DAD/ESI-MSn). A total of 50 compounds were observed in the methanol extracts, including 23 flavonoids, 20 lignans and 7 quinic acid derivatives. These compounds were separated on a C18 column and identified or tentatively characterized based on UV spectra and MS fragmentation behavior. In contrast to previous reports, the phenolic patterns of these two Cuscuta species were found to be very different. Kaempferol and astragalin were the predominant constituents of C. australis, while hyperoside was the major compound in C. chinensis. Most of the identified compounds, especially the acylated flavonoid glycosides, have not previously been reported from Cuscuta species. In addition, a 30,Da neutral loss observed for flavonols was investigated and could be used to differentiate flavonoid isomers such as kaempferol and luteolin. The ESI-MS fragmentation behavior of furofuran lignans was also investigated, and a characteristic pathway is proposed. The large differences observed between the phenolic constituents of C. chinensis and C. australis strongly encouraged further comparison of the bioactivities of these two species. Copyright © 2005 John Wiley & Sons, Ltd. [source]