| |||
C4 Plants (c4 + plant)
Selected AbstractsEffects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigeraENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2010Jin Yin Abstract Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population's total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non-existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant). [source] Stable carbon isotope signature of ancient maize agriculture in the soils of Motul de San José, GuatemalaGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 3 2007Elizabeth A. Webb Soil profiles collected from a 2.5-km transect radiating from the Maya center of Motul de San José were analyzed for the stable carbon-isotope composition of their soil organic matter. The residues of maize (Zea mays), the only C4 plant known to have been cultivated in this area by the ancient Maya, impart a carbon-isotope signature to the underlying soil organic matter reservoir that is distinct from that produced by the native C3 forest vegetation. The varying turnover rates of the humic acid and humin fractions of the soil organic matter allowed us to distinguish between the presence of modern and ancient maize residues in these soils, and to delineate the lateral extent of maize cultivation at this ancient Maya site. The strongest isotopic evidence of maize residues is preserved in the soils surrounding the peripheral settlement of Chäkokot and at one locality within the urban center of Motul de San José. © 2007 Wiley Periodicals, Inc. [source] Host-specific aphid population responses to elevated CO2 and increased N availabilityGLOBAL CHANGE BIOLOGY, Issue 11 2005Erika A. Sudderth Abstract Sap-feeding insects such as aphids are the only insect herbivores that show positive responses to elevated CO2. Recent models predict that increased nitrogen will increase aphid population size under elevated CO2, but few experiments have tested this idea empirically. To determine whether soil nitrogen (N) availability modifies aphid responses to elevated CO2, we tested the performance of Macrosiphum euphorbiae feeding on two host plants; a C3 plant (Solanum dulcamara), and a C4 plant (Amaranthus viridis). We expected aphid population size to increase on plants in elevated CO2, with the degree of increase depending on the N availability. We found a significant CO2× N interaction for the response of population size for M. euphorbiae feeding on S. dulcamara: aphids feeding on plants grown in ambient CO2, low N conditions increased in response to either high N availability or elevated CO2. No population size responses were observed for aphids infesting A. viridis. Elevated CO2 increased plant biomass, specific leaf weight, and C : N ratios of the C3 plant, S. dulcamara but did not affect the C4 plant, A. viridis. Increased N fertilization significantly increased plant biomass, leaf area, and the weight : height ratio in both experiments. Elevated CO2 decreased leaf N in S. dulcamara and had no effect on A. viridis, while higher N availability increased leaf N in A. viridis and had no effect in S. dulcamara. Aphid infestation only affected the weight : height ratio of S. dulcamara. We only observed an increase in aphid population size in response to elevated CO2 or increased N availability for aphids feeding on S. dulcamara grown under low N conditions. There appears to be a maximum population growth rate that M. euphorbiae aphids can attain, and we suggest that this response is because of intrinsic limits on development time and fecundity. [source] Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigeraENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2010Jin Yin Abstract Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population's total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non-existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant). [source] Carbon sources of Amazonian fisheriesFISHERIES MANAGEMENT & ECOLOGY, Issue 4 2000E. Benedito-Cecilio Variation in the seasonal and spatial isotopic composition of plant C4 (aquatic macrophytes) and C3 (forest, C3 aquatic macrophytes and algae), and that of fish [Prochilodus nigricans Agassiz, Mylossoma duriventre (Cuvier), Colossoma macropomum (Cuvier), Semaprochilodus insignis (Schomburgk) and S. taeniurus Steindachner in the Amazon floodplain were analysed to test whether the fisheries deliver plant carbon to the population of Manaus in the same proportion as it is available in the floodplain. The contribution of C4 plants was significantly lower in 13C during the season of high water levels and increased toward the west of the basin. Mylossoma duriventre and C. macropomum changed ,13C levels, while the ,13C of P. nigricans and C. macropomum shifted spatially. The contribution of C4 to the fisheries yield was small. C3 plants (excluding phytoplankton) also contributed less than expected. This was explained by the importance of detritivores to the yield of the fisheries and the dependence of these species on algal carbon. [source] Effects of stream restoration and wastewater treatment plant effluent on fish communities in urban streamsFRESHWATER BIOLOGY, Issue 10 2006ROBERT M. NORTHINGTON Summary 1. Fish community characteristics, resource availability and resource use were assessed in three headwater urban streams in Piedmont North Carolina, U.S.A. Three site types were examined on each stream; two urban (restored and unrestored) and a forested site downstream of urbanisation, which was impacted by effluent from a wastewater treatment plant (WWTP). Stream basal resources, aquatic macroinvertebrates, terrestrial macroinvertebrates and fish were collected at each site. 2. The WWTPs affected isotope signatures in the biota. Basal resource, aquatic macroinvertebrate and fish ,15N showed significant enrichments in the downstream sites, although ,13C signatures were not greatly influenced by the WWTP. Fish were clearly deriving a significant part of their nutrition from sewage effluent-derived sources. There was a trend towards lower richness and abundance of fish at sewage-influenced sites compared with urban restored sites, although the difference was not significant. 3. Restored stream sites had significantly higher fish richness and a trend towards greater abundance compared with unrestored sites. Although significant differences did not exist between urban restored and unrestored areas for aquatic and terrestrial macroinvertebrate abundances and biotic indices of stream health, there appeared to be a trend towards improvements in restored sites for these parameters. Additional surveys of these sites on a regular basis, along with maintenance of restored features are vital to understanding and maximising restoration effectiveness. 4. A pattern of enriched ,13C in fish in restored and unrestored streams in conjunction with enriched ,13C of terrestrial invertebrates at these sites suggests that these terrestrial subsidies are important to the fish, a conclusion also supported by isotope cross plots. Furthermore, enriched ,13C observed for terrestrial invertebrates is consistent with some utilisation of the invasive C4 plants that occur in the urban riparian areas. [source] Can C4 plants contribute to aquatic food webs of subtropical streams?FRESHWATER BIOLOGY, Issue 6 2003Joanne E. Clapcott Summary 1. Recent stable isotope studies have revealed that C4 plants play a minor role in aquatic food webs, despite their often widespread distribution and production. We compared the breakdown of C3 (Eucalyptus) and C4 (Saccharum and Urochloa) plant litter in a small rain forest stream and used laboratory feeding experiments to determine their potential contribution to the aquatic food web. 2. All species of litter broke down at a fast rate in the stream, although Urochloa was significantly faster than Eucalyptus and Saccharum. This was consistent with the observed higher total organic nitrogen of Urochloa compared with the other two species. 3. The breakdown of Urochloa and Saccharum was, however, not associated with shredding invertebrates, which were poorly represented in leaf packs compared with the native Eucalyptus. The composition of the invertebrate fauna in packs of Urochloa quickly diverged from that of the other two species. 4. Feeding experiments using a common shredding aquatic insect Anisocentropus kirramus showed a distinct preference for Eucalyptus over both C4 species. Anisocentropus was observed to ingest C4 plant litter, particularly in the absence of other choices, and faecal material collected was clearly of C4 origin, as determined by stable isotope analysis. However, the stable carbon isotope values of the larvae did not shift away from their C3 signature in any of the feeding trials. 5. These data suggest that shredders avoid the consumption of C4 plants, in favour of native C3 species that appear to be of lower food quality (based on C : N ratios). Lower rates of consumption and lack of assimilation of C4 carbon also suggest that shredders may have a limited ability to process this material, even in the absence of alternative litter sources. Large scale clearing of forest and vegetation for C4 crops such as sugarcane will undoubtedly have important consequences for stream ecosystem function. [source] Measuring natural abundance of 13C in respired CO2: variability and implications for non-invasive dietary analysisFUNCTIONAL ECOLOGY, Issue 6 2001S. E. PERKINS Summary 1,Three experiments were performed, using laboratory mice (Mus musculus) as a model species, to evaluate the potential of using measurements of carbon isotope ratios in expired CO2 for tracing diets. 2,Breath 13C signatures of mice fed a constant diet (,21·4, ± 0·35) reflected their diet, but were depleted by on average ,5·7,. Body mass, sex and age were independent and significant factors correlated with the variability of 13C enrichment in respired CO2. 3,Breath 13C signatures from starved mice (7 h) were lower than unstarved mice by 2·0,. Subsequently when starved mice were fed a small meal of a new diet, breath 13C signatures approached those of the new diets within 15 min, returning to preingestion levels after 105 min. 4,After a permanent diet switch 13C values of breath were not asymptotic within 6 days, possibly because of use of fat reserves during the daytime carrying an isotopic memory of the previous diet. Hence, individual breath 13C signatures may vary according to nutritive state and previous dietary history. 5,Interindividual variability was measured at 3·3,. The implications are that large samples of individuals will be required to distinguish between diets of different populations where the isotopic difference between their diets was small , for example, that expected between herbivorous and carnivorous diets. However, breath would be suitable for distinguishing between dietary intakes of individuals for food types that are isotopically more distinct , such as between C3 and C4 plants. [source] Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairieGLOBAL CHANGE BIOLOGY, Issue 12 2008REBECCA A. SHERRY Abstract Global climate change is expected to result in a greater frequency of extreme weather, which can cause lag effects on aboveground net primary production (ANPP). However, our understanding of lag effects is limited. To explore lag effects following extreme weather, we applied four treatments (control, doubled precipitation, 4 °C warming, and warming plus doubled precipitation) for 1 year in a randomized block design and monitored changes in ecosystem processes for 3 years in an old-field tallgrass prairie in central Oklahoma. Biomass was estimated twice in the pretreatment year, and three times during the treatment and posttreatment years. Total plant biomass was increased by warming in spring of the treatment year and by doubled precipitation in summer. However, double precipitation suppressed fall production. During the following spring, biomass production was significantly suppressed in the formerly warmed plots 2 months after treatments ceased. Nine months after the end of treatments, fall production remained suppressed in double precipitation and warming plus double precipitation treatments. Also, the formerly warmed plots still had a significantly greater proportion of C4 plants, while the warmed plus double precipitation plots retained a high proportion of C3 plants. The lag effects of warming on biomass did not match the temporal patterns of soil nitrogen availability determined by plant root simulator probes, but coincided with warming-induced decreases in available soil moisture in the deepest layers of soil which recovered to the pretreatment pattern approximately 10 months after the treatments ceased. Analyzing the data with an ecosystem model showed that the lagged temporal patterns of effects of warming and precipitation on biomass can be fully explained by warming-induced differences in soil moisture. Thus, both the experimental results and modeling analysis indicate that water availability regulates lag effects of warming on biomass production. [source] Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawnGLOBAL CHANGE BIOLOGY, Issue 9 2008NEETA S. BIJOOR Abstract We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.5±1.3 °C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio (,15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant ,15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio (,13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition. [source] C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soilsGLOBAL CHANGE BIOLOGY, Issue 10 2007JONATHAN G. WYNN Abstract The large difference in the degree of discrimination of stable carbon isotopes between C3 and C4 plants is widely exploited in global change and carbon cycle research, often with the assumption that carbon retains the carbon isotopic signature of its photosynthetic pathway during later stages of decomposition in soil and sediments. We applied long-term incubation experiments and natural 13C-labelling of C3 and C4-derived soil organic carbon (SOC) collected from across major environmental gradients in Australia to elucidate a significant difference in the rate of decomposition of C3- and C4-derived SOC. We find that the active pool of SOC (ASOC) derived from C4 plants decomposes at over twice the rate of the total pool of ASOC. As a result, the proportion of C4 photosynthesis represented in the heterotrophic CO2 flux from soil must be over twice the proportional representation of C4-derived biomass in SOC. This observation has significant implications for much carbon cycle research that exploits the carbon isotopic difference in these two photosynthetic pathways. [source] Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres?GLOBAL CHANGE BIOLOGY, Issue 6 2004An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE) Abstract The C4 grass Zea mays (maize or corn) is the third most important food crop globally in terms of production and demand is predicted to increase 45% from 1997 to 2020. However, the effects of rising [CO2] upon C4 plants, and Z. mays specifically, are not sufficiently understood to allow accurate predictions of future crop production. A rainfed, field experiment utilizing free-air concentration enrichment (FACE) technology in the primary area of global corn production (US Corn Belt) was undertaken to determine the effects of elevated [CO2] on corn. FACE technology allows experimental treatments to be imposed upon a complete soil,plant,atmosphere continuum with none of the effects of experimental enclosures on plant microclimate. Crop performance was compared at ambient [CO2] (354 , mol mol,1) and the elevated [CO2] (549 ,mol mol,1) predicted for 2050. Previous laboratory studies suggest that under favorable growing conditions C4 photosynthesis is not typically enhanced by elevated [CO2]. However, stomatal conductance and transpiration are decreased, which can indirectly increase photosynthesis in dry climates. Given the deep soils and relatively high rainfall of the US Corn Belt, it was predicted that photosynthesis would not be enhanced by elevated [CO2]. The diurnal course of gas exchange of upper canopy leaves was measured in situ across the growing season of 2002. Contrary to the prediction, growth at elevated [CO2] significantly increased leaf photosynthetic CO2 uptake rate (A) by up to 41%, and 10% on average. Greater A was associated with greater intercellular [CO2], lower stomatal conductance and lower transpiration. Summer rainfall during 2002 was very close to the 50-year average for this site, indicating that the year was not atypical or a drought year. The results call for a reassessment of the established view that C4 photosynthesis is insensitive to elevated [CO2] under favorable growing conditions and that the production potential of corn in the US Corn Belt will not be affected by the global rise in [CO2]. [source] The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannasGLOBAL CHANGE BIOLOGY, Issue 7 2003W. J. BOND Abstract The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass-fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire-proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo-records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50,100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses. [source] Organic facies and geochemical aspects in Neogene neritic sediments of the Takafu syncline area of central Japan: Paleoenvironmental and sedimentological reconstructionsISLAND ARC, Issue 4 2006Ken Sawada Abstract Organic petrological observations of kerogen macerals and organic geochemical analyses of carbon isotopes of kerogen macerals and biomarkers were conducted on Neogene neritic sediments of the Takafu syncline area of central Japan. The Senmi, Sakainomiya and Lower Shigarami Formations in that area were deposited at the neritic provinces on the southern edge of the paleo-Japan Sea during the Late Miocene to Early Pliocene. Sedimentary organic matter in these formations was almost terrigenous in origin. Changes in kerogen maceral compositions reflect sedimentological and tectonic histories evaluated in previous studies from sedimentary facies and paleontology. It was found that carbon isotope ratios (,13C) of kerogen macerals increased from ,28, to ,25, from the Sakainomiya to the lower part of the Lower Shigarami Formations. The cause of that increase was presumably the expansion of C4 plants into southwest Japan. The timing was concordant with that of the expansion of C4 plant grasslands in East Asia. The oxicity (oxic to anoxic) conditions of sea bottoms evaluated from pristane/phytane ratios varied. Particularly, in the lower part of the Senmi Formation, layers in which no steroid biomarkers could be detected were found, and had presumably formed under oxic conditions when strong biodegradation had occurred. Concentrations of regular (C27,C29) steranes and dinosteranes were higher in the Sakainomiya and Lower Shigarami Formations. This indicates that dinoflagellates-dominant primary productions were higher at those stages. In addition, concentrations of diatomaceous biomarkers such as C26 norsterane increased from the Lower Shigarami Formation, thus adding diatoms to the major producers. Furthermore, similar associations between the increases of ,13C values of kerogen macerals and concentrations of diatomaceous biomarkers were observed in the Takafu syncline area. Thus, the expansion of C4 plants was possibly associated with the high production of diatom in the shallow-marine areas of the paleo-Japan Sea during the Neogene Period. [source] Spatial and temporal variability in host use by Helicoverpa zea as measured by analyses of stable carbon isotope ratios and gossypol residuesJOURNAL OF APPLIED ECOLOGY, Issue 3 2010Graham Head Summary 1.,A high dose/refuge strategy has been adopted in the USA to manage the risk of Bacillus thuringiensis (Bt) resistance in target pests such as the cotton bollworm (CBW), Helicoverpa zea (Boddie) in transgenic Bt cotton Gossypium hirsutum L. Structured refuges, consisting of non-Bt cotton, have been a mandated part of this strategy to produce non-selected insects that are temporally and spatially synchronous with insects from the Bt crop, diluting Bt resistance alleles through mating. However, the bollworm is highly polyphagous and exploits a large number of crop and weedy hosts concurrently with Bt cotton. 2.,A study was carried out in five major US cotton-producing states during 2002 and 2003 using the ratios of 13C to 12C in bollworm moths to estimate the proportions of the population originating from C3 or C4 plants. A separate study measured gossypol residues in moths from four states in 2005 and 2006, enabling the identification of moths whose natal hosts were cotton rather than other C3 hosts. 3.,C4 hosts served as the principal source of bollworm moths from mid-to-late June to early September, depending on the state. Beginning in late August/early September and lasting 1,4 weeks, the majority of moths exhibited isotopic compositions characteristic of C3 hosts. During this period, however, the minimum percentage of moths that developed as larvae on C4 hosts was typically >25%. By mid-September and through October and November, the majority of the bollworm population exhibited C4 isotopic compositions. 4.,Between late June and early August, cotton-derived bollworm moths (moths with gossypol residues) comprised <1% of moths in all states, and remained below this level throughout the season in North Carolina. In other states, cotton-derived moths increased between early August and early September to peak at an average of 19·1% of all moths. 5.,Synthesis and applications.,Data on 13C/12C ratios and gossypol residues in CBW moths were used to assess the importance of structured non-Bt cotton refuges for the management of Bt resistance risk in H. zea. Weekly estimates of bollworm breeding on cotton, C3 plants other than cotton and C4 plants showed that, throughout the season, the majority of bollworm moths caught in pheromone traps adjacent to cotton fields did not develop as larvae on cotton. This result implies that management practices in cotton such as the use of structured cotton refuges will play a relatively minor role , particularly compared with maize Zea mays L. , in managing potential resistance to Bt cotton in populations of the CBW in the US Cotton Belt. [source] Prediction of model pools for a long-term experiment using near-infrared spectroscopyJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2010Kerstin Michel Abstract Fourty-one soil samples from the "Eternal Rye" long-term experiment in Halle, Germany, were used to test the usefulness of near-infrared spectroscopy (NIRS) to differentiate between C derived from C3 and C4 plants by using the isotopic signature (,13C) and to predict the pools considered in the Rothamsted Carbon (RothC) model, i.e., decomposable plant material, resistant plant material, microbial biomass, humified organic matter, and inert organic matter. All samples were scanned in the visible-light and near-infrared region (400,2500 nm). Cross-validation equations were developed using the whole spectrum (first to third derivative) and a modified partial least-square regression method. ,13C values and all pools of the RothC model were successfully predicted by NIRS as reflected by RSC values (ratio between standard deviation of the laboratory results and standard error of cross-validation) ranging from 3.2 to 3.4. Correlations analysis indicated that organic C can be excluded as basis for the successful predictions by NIRS in most cases, i.e., 11 out of 16. [source] Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastidsPLANT BIOTECHNOLOGY JOURNAL, Issue 2 2010Amir Sattarzadeh Summary Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll-specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath-specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon-optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid-related studies of wild-type and mutant maize plants and provide material from which different plastid types may be isolated. [source] Seasonal differences in photosynthesis between the C3 and C4 subspecies of Alloteropsis semialata are offset by frost and droughtPLANT CELL & ENVIRONMENT, Issue 7 2008DOUGLAS G. IBRAHIM ABSTRACT The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses. [source] A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equalPLANT CELL & ENVIRONMENT, Issue 1 2008CRAIG R. BRODERSEN ABSTRACT Global-change scenarios suggest a trend of increasing diffuse light due to expected increases in cloud cover. Canopy-level measurements of plant-community photosynthesis under diffuse light show increased productivity attributed to more uniform distribution of light within the forest canopy, yet the effect of the directional quality of light at the leaf level is unknown. Here we show that leaf-level photosynthesis in sun leaves of both C3 and C4 plants can be 10,15% higher under direct light compared to equivalent absorbed irradiances of diffuse light. High-light-grown leaves showed significant photosynthetic enhancement in direct light, while shade-adapted leaves showed no preference for direct or diffuse light at any irradiance. High-light-grown leaves with multiple palisade layers may be adapted to better utilize direct than diffuse light, while shade leaf structure does not appear to discriminate light based on its directionality. Based upon our measurements, it appears that leaf-level and canopy-level photosynthetic processes react differently to the directionality of light, and previously observed increases in canopy-level photosynthesis occur even though leaf-level photosynthesis decreases under diffuse light. [source] The effect of temperature on C4 -type leaf photosynthesis parametersPLANT CELL & ENVIRONMENT, Issue 9 2007RAIA-SILVIA MASSAD ABSTRACT C4 -type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters , the maximum catalytic rate of the enzyme ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) (Vcmax), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (Vpmax) and the maximum electron transport rate (Jmax) , were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (An) versus intercellular air space CO2 concentrations (Ci), and An versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15,40 °C. Values of Vcmax, Vpmax and Jmax were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of Vpmax and Jmax obtained at 25 °C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of Vcmax, Vpmax and Jmax are then proposed. These parameters should be further tested with C4 plants for validation. Other model key parameters such as the mesophyll cell conductance to CO2 (gi), the bundle sheath cells conductance to CO2 (gbs) and Michaelis,Menten constants for CO2 and O2 (Kc, Kp and Ko) also vary with temperature and should be better parameterized. [source] Comparison of leaf structure and photosynthetic characteristics of C3 and C4Alloteropsis semialata subspeciesPLANT CELL & ENVIRONMENT, Issue 2 2006O. UENO ABSTRACT Alloteropsis semialata (R. Br.) Hitchcock includes both C3 and C4 subspecies: the C3 subspecies eckloniana and the C4 subspecies semialata. We examined the leaf structural and photosynthetic characteristics of these plants. A. semialata ssp. semialata showed high activities of photosynthetic enzymes involved in phosphoenolpyruvate carboxykinase-type C4 photosynthesis and an anomalous Kranz anatomy. Phosphoenolpyruvate carboxylase; pyruvate, Pi dikinase and glycine decarboxylase (GDC) were compartmentalized between the mesophyll (M) and inner bundle sheath cells, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in both cells. A. semialata ssp. eckloniana also showed an anomalous non-Kranz anatomy, in which the mestome sheath cells included abundant chloroplasts and mitochondria. Rubisco and GDC accumulated densely in the M and mestome sheath cells, whereas the levels of C4 enzymes were low. The activity levels of photorespiratory enzymes in both subspecies were intermediate between those in typical C3 and C4 plants. The values of CO2 compensation points in A. semialata ssp. semialata were within the C4 range, whereas those in A. semialata ssp. eckloniana were somewhat lower than the C3 range. These data suggest that the plants are C3 -like and C4 -like but not typical C3 and C4, and when integrated with previous findings, point to important variability in the expression of C4 physiology in this species complex. A. semialata is therefore an intriguing grass species with which to study the evolutionary linkage between C3 and C4 plants. [source] Dynamic photo-inhibition and carbon gain in a C4 and a C3 grass native to high latitudesPLANT CELL & ENVIRONMENT, Issue 11 2004D. S. KUBIEN ABSTRACT C4 plants are rare in the cool climates characteristic of high latitudes and altitudes, perhaps because of an enhanced susceptibility to photo-inhibition at low temperatures relative to C3 species. In the present study we tested the hypothesis that low-temperature photo-inhibition is more detrimental to carbon gain in the C4 grass Muhlenbergia glomerata than the C3 species Calamogrostis Canadensis. These grasses occur together in boreal fens in northern Canada. Plants were grown under cool (14/10 °C day/night) and warm (26/22 °C) temperatures before measurement of the light responses of photosynthesis and chlorophyll fluorescence at different temperatures. Cool growth temperatures led to reduced rates of photosynthesis in M. glomerata at all measurement temperatures, but had a smaller effect on the C3 species. In both species the amount of xanthophyll cycle pigments increased when plants were grown at 14/10 °C, and in M. glomerata the xanthophyll epoxidation state was greatly reduced. The detrimental effect of low growth temperature on photosynthesis in M. glomerata was almost completely reversed by a 24-h exposure to the warm-temperature regime. These data indicate that reversible dynamic photo-inhibition is a strategy by which C4 species may tolerate cool climates and overcome the Rubisco limitation that is prevalent at low temperatures in C4 plants. [source] Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudesPLANT CELL & ENVIRONMENT, Issue 7 2004D. S. KUBIEN ABSTRACT The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low-temperature photosynthetic performance of the co-occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low-temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m,2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm-grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi -regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20,30% by O2 reduction, indicating the Pi -regeneration limitation was removed during low-temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures. [source] Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesisPLANT CELL & ENVIRONMENT, Issue 9 2000J. S. Gillon ABSTRACT The 18O content of CO2 is a powerful tracer of photosynthetic activity at the ecosystem and global scale. Due to oxygen exchange between CO2 and 18O-enriched leaf water and retrodiffusion of most of this CO2 back to the atmosphere, leaves effectively discriminate against 18O during photosynthesis. Discrimination against 18O (,18O) is expected to be lower in C4 plants because of low ci and hence low retrodiffusing CO2 flux. C4 plants also generally show lower levels of carbonic anhydrase (CA) activities than C3 plants. Low CA may limit the extent of 18O exchange and further reduce ,18O. We investigated CO2,H2O isotopic equilibrium in plants with naturally low CA activity, including two C4 (Zea mays, Sorghum bicolor) and one C3 (Phragmites australis) species. The results confirmed experimentally the occurrence of low ,18O in C4, as well as in some C3, plants. Variations in CA activity and in the extent of CO2,H2O isotopic equilibrium (,eq) estimated from on-line measurements of ,18O showed large range of 0,100% isotopic equilibrium (,eq= 0,1). This was consistent with direct estimates based on assays of CA activity and measurements of CO2 concentrations and residence times in the leaves. The results demonstrate the potential usefulness of ,18O as indicator of CA activity in vivo. Sensitivity tests indicated also that the impact of ,eq< 1 (incomplete isotopic equilibrium) on 18O of atmospheric CO2 can be similar for C3 and C4 plants and in both cases it increases with natural enrichment of 18O in leaf water. [source] Utilization of O2 in the metabolic optimization of C4 photosynthesisPLANT CELL & ENVIRONMENT, Issue 1 2000J. P. Maroco ABSTRACT The combined effects of O2 on net rates of photosynthesis, photosystem II activity, steady-state pool size of key metabolites of photosynthetic metabolism in the C4 pathway, C3 pathway and C2 photorespiratory cycle and on growth were evaluated in the C4 species Amaranthus edulis and the C3 species Flaveria pringlei. Increasing O2 reduced net CO2 assimilation in F. pringlei due to an increased flux of C through the photorespiratory pathway. However, in A. edulis increasing O2 up to 5,10% stimulated photosynthesis. Analysis of the pool size of key metabolites in A. edulis suggests that while there is some O2 dependent photorespiration, O2 is required for maximizing C4 cycle activity to concentrate CO2 in bundle sheath cells. Therefore, the response of net photosynthesis to O2 in C4 plants may result from the balance of these two opposing effects. Under 21 versus 5% O2, growth of A. edulis was stimulated about 30% whereas that of F. pringlei was inhibited about 40%. [source] Determination of apparent digestibility coefficient in fish by stable carbon isotopesAQUACULTURE NUTRITION, Issue 1 2008A.C.B. OLIVEIRA Abstract Estimation of the apparent digestibility coefficient ADC(%) of C3 and C4 plants in experimental diets for fingerlings of tambaqui (Colossoma macropomum, Cuvier, 1818) was calculated by applying chromic oxide (Cr2O3) external marker methodology and by a proposed mathematical expression based on the isotopic composition (,13C). A total of 240 tambaqui fingerlings each weighing ±48.2 g and measuring ±9.8 cm were maintained in eight 500-L aquariums specially designed for faeces collection. The ADC(%) of the C3 and C4 diets did not differ significantly between the two methods, producing results of 75.6%; 76.2% and 74.4%; 72.8%, respectively. The ADC(%) results obtained by isotopic method presented less variation than by chromic oxide. The proposed mathematical expression for calculating the ADC(%) based on ,13C values offers an alternative methodology, which can reduce errors and diminish the effort required to collect biological material. However, it is important to note that this method is limited to analysis of diets or food items with distinct isotopic signals. [source] |