Buoyant Density (buoyant + density)

Distribution by Scientific Domains


Selected Abstracts


Detecting active methanogenic populations on rice roots using stable isotope probing

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2005
Yahai Lu
Summary Methane is formed on rice roots mainly by CO2 reduction. The present study aimed to identify the active methanogenic populations responsible for this process. Soil-free rice roots were incubated anaerobically under an atmosphere of H2/13CO2 or N2/13CO2 with phosphate or carbonate (marble) as buffer medium. Nucleic acids were extracted and fractionated by caesium trifluoroacetate equilibrium density gradient centrifugation after 16-day incubation. Community analyses were performed for gradient fractions using terminal restriction fragment polymorphism analysis (T-RFLP) and sequencing of the 16S rRNA genes. In addition, rRNA was extracted and analysed at different time points to trace the community change during the 16-day incubation. The Methanosarcinaceae and the yet-uncultured archaeal lineage Rice Cluster-I (RC-I) were predominant in the root incubations when carbonate buffer and N2 headspace were used. The analysis of [13C]DNA showed that the relative 16S rRNA gene abundance of RC-I increased whereas that of the Methanosarcinaceae decreased with increasing DNA buoyant density, indicating that members of RC-I were more active than the Methanosarcinaceae. However, an unexpected finding was that RC-I was suppressed in the presence of high H2 concentrations (80%, v/v), which during the early incubation period caused a lower CH4 production compared with that with N2 in the headspace. Eventually, however, CH4 production increased, probably because of the activity of Methanosarcinaceae, which became prevalent. Phosphate buffer appeared to inhibit the activity of the Methanosarcinaceae, resulting in lower CH4 production as compared with carbonate buffer. Under these conditions, Methanobacteriaceae were the prevalent methanogens. Our study suggests that the active methanogenic populations on rice roots change in correspondence to the presence of H2 (80%, v/v) and the type of buffer used in the system. [source]


Contrast analysis of the composition of ribosomes extracted with different purification procedures

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2000
Giuseppe Briganti
The composition and hydration of E. coli ribosomes isolated with different purification protocols has been analysed by combining two experimental techniques: measurements of small-angle neutron scattering (SANS), for two different isotopic solvent compositions, and refractive index (RI) increments. From the contrast between the solvent and solute scattering densities and the molar polarizability, determined experimentally with SANS and RI measurements, three independent equations are obtained and three unknown quantities are determined: (i) the volume of the solute hydrated skeleton Vs, (ii) the material contained in it, namely the biological components, intrinsic (rRNA and proteins) and extrinsic, such as aminoacylsynthetase and elongation factors, (iii) the number of water molecules structurally bound to the ribosome and non-exchangeable with the solvent. From the form factor at infinite contrast, a second definition of the solute volume is obtained, , which represents the volume within the contour surface of the ribosome. This value is generally larger than Vs and can include a certain amount of water molecules, i.e. those inside the volume (,Vs). Considering the molar volume of this water to be equal to that of the bulk water, it is possible to evaluate its amount. The particle density calculated from the ribosome components in , including proteins, RNA, bound and unbound water molecules, corresponds to the buoyant density measured for E. coli 70S particles. The two ribosomal preparations display different performances in protein synthesis; hence the results indicate that the optimal condition corresponds to a wider skeleton and contour volume but containing a smaller amount of segregated water molecules. It is believed that the method provides a reliable technique to determine the composition of ribosomes under various experimental conditions. [source]


Purification and characterization of a new reovirus from the Chinese mitten crab, Eriocheir sinensis

JOURNAL OF FISH DISEASES, Issue 12 2004
S Zhang
Abstract A new reovirus was recently isolated from a freshwater crab, the Chinese mitten crab, Eriocheir sinensis, in China. The complete viral particles are 55 nm in diameter, icosahedral, non-enveloped and have a mean buoyant density of 1.39 g cm,3 in CsCl gradient. The viral genome is composed of 12 pieces of dsRNA with an electrophoretic pattern of 3/4/2/3. This virus infects connective tissue of the gills, gut and hepatopancreas. Partial cDNA cloning and sequence analysis showed that the RNA-dependent RNA polymerase is located in the first RNA segment. From its biochemical, ultrastructural and physicochemical properties, this virus is quite different from the genus Aquareovirus (Reoviridae). It may represent a new genus of Reoviridae, different from the other crab reoviruses, P and W2. [source]


JET-SUSPENDED, CALCITE-BALLASTED CYANOBACTERIAL WATERWARTS IN A DESERT SPRING1

JOURNAL OF PHYCOLOGY, Issue 3 2002
Ferran Garcia-Pichel
We describe a population of colonial cyanobacteria (waterwarts) that develops as the dominant primary producer in a bottom-fed, O2 -poor, warm spring in the Cuatro Ciénegas karstic region of the Mexican Chihuahuan Desert. The centimeter-sized waterwarts were suspended within a central, conically shaped, 6-m deep well by upwelling waters. Waterwarts were built by an Aphanothece -like unicellular cyanobacterium and supported a community of epiphytic filamentous cyanobacteria and diatoms but were free of heterotrophic bacteria inside. Sequence analysis of 16S rRNA genes revealed that this cyanobacterium is only distantly related to several strains of other unicellular cyanobacteria (Merismopedia, Cyanothece, Microcystis). Waterwarts contained orderly arrangements of mineral crystallites, made up of microcrystalline low-magnesium calcite with high levels of strontium and sulfur. Waterwarts were 95.9% (v/v) glycan, 2.8% cells, and 1.3% mineral grains and had a buoyant density of 1.034 kg·L,1. An analysis of the hydrological properties of the spring well and the waterwarts demonstrated that both large colony size and the presence of controlled amounts of mineral ballast are required to prevent the population from being washed out of the well. The unique hydrological characteristics of the spring have likely selected for both traits. The mechanisms by which controlled nucleation of extracellular calcite is achieved remain to be explored. [source]


Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function,

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2002
Mike Manefield
An ongoing challenge within microbial ecology is the development of methodologies that attribute microbial community functions to microbial diversity. One approach, involving the incorporation of stable isotopes from labelled tracer compounds into biological signature molecules (biomarkers), may overcome this current limitation. To examine the potential of RNA as the biomarker in stable isotope probing we have generated a series of atom % 13C-enriched RNA samples through exploitation of the anabolic abilities of a phenol-degrading environmental isolate. Isotope ratio mass spectrometry was used to determine the atom % 13C of each RNA sample (ca. 1,100%). The corresponding buoyant density (1.755,1.795,g,mL,1) was determined by equilibrium density gradient centrifugation and agarose gel electrophoresis. This empirically defined relationship between the atom % 13C of RNA and its buoyant density suggests ribonucleic acids with atom % 13C enrichments greater than 10% can be isolated by equilibrium density centrifugation. The processing and analysis of isolated RNA by reverse transcription polymerase chain reaction, denaturing gradient gel electrophoresis, cloning and sequencing are discussed. The RNA-based stable isotope probing protocol presented here will find particular utility in assessing the roles of microbial community members in the biodegradation of natural and anthropogenic xenobiotic compounds. Copyright © 2002 John Wiley & Sons, Ltd. [source]