| |||
Bulky Side Chain (bulky + side_chain)
Selected AbstractsEffect of the disease-causing mutations identified in human ribonuclease (RNase) H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HIIFEBS JOURNAL, Issue 19 2008Muhammad S. Rohman Eukaryotic ribonuclease (RNase) H2 consists of one catalytic and two accessory subunits. Several single mutations in any one of these subunits of human RNase H2 cause Aicardi,Goutières syndrome. To examine whether these mutations affect the complex stability and activity of RNase H2, three mutant proteins of His-tagged Saccharomyces cerevisiae RNase H2 (Sc-RNase H2*) were constructed. Sc-G42S*, Sc-L52R*, and Sc-K46W* contain single mutations in Sc-Rnh2Ap*, Sc-Rnh2Bp*, and Sc-Rnh2Cp*, respectively. The genes encoding the three subunits were coexpressed in Escherichia coli, and Sc-RNase H2* and its derivatives were purified in a heterotrimeric form. All of these mutant proteins exhibited enzymatic activity. However, only the enzymatic activity of Sc-G42S* was greatly reduced compared to that of the wild-type protein. Gly42 is conserved as Gly10 in Thermococcus kodakareansis RNase HII. To analyze the role of this residue, four mutant proteins, Tk-G10S, Tk-G10A, Tk-G10L, and Tk-G10P, were constructed. All mutant proteins were less stable than the wild-type protein by 2.9,7.6 °C in Tm. A comparison of their enzymatic activities, substrate binding affinities, and CD spectra suggests that the introduction of a bulky side chain into this position induces a local conformational change, which is unfavorable for both activity and substrate binding. These results indicate that Gly10 is required to make the protein fully active and stable. [source] Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptidesJOURNAL OF PEPTIDE SCIENCE, Issue 4 2007Marilena Manea Abstract Trypsin cleaves specifically peptide bonds at the C -terminal side of lysine and arginine residues, except for -Arg-Pro- and -Lys-Pro- bonds which are normally resistant to proteolysis. Here we report evidence for a -Lys-Pro- tryptic cleavage in modified oligotuftsin derivatives, Ac-[TKPKG]4 -NH2) (1), using high-resolution mass spectrometry and HPLC as primary methods for analysis of proteolytic reactions. The proteolytic susceptibility of -Lys-Pro- bonds was strongly dependent on flanking residues, and the flexibility of the peptide backbone might be a prerequisite for this unusual cleavage. While -Lys-Gly- bonds in 1 were rapidly cleaved, the modification of these Lys residues by the attachment of a ß-amyloid(4,10) epitope to yield -Lys(X)-Gly derivatives prevented cleavage of this bond, and provided trypsin cleavage of -Lys-Pro- bonds, the pathway of this degradation being independent on the type of Lys- N, -side chains (acetyl group, amino acid, peptide). Substitution of the Lys residues by Ala at the P,2 positions decreased the tryptic cleavage, while replacement of the bulky side chain of Thr at the P2 positions strongly increased the cleavage of -Lys-Pro- bonds. Circular dichroism (CD) data of the modified oligotuftsin derivatives are in accord with enhanced flexibility of the peptide backbone, as a prerequisite for increased susceptibility to cleavage of -Lys-Pro- bonds. These results obtained of oligotuftsin derivatives might have implications for the proteolytic degradation of target peptides that require specific conformational preconditions. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] Negative ion dissociation of peptides containing hydroxyl side chainsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 2 2008Dan Pu The dissociation of deprotonated peptides containing hydroxyl side chains was studied by electrospray ionization coupled with Fourier transform ion cyclotron resonance (ESI-FTICR) via sustained off-resonance irradiation collision induced dissociation (SORI-CID). Dissociation under post-source decay (PSD) conditions was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). This work included hexapeptides with one residue of serine, threonine, or tyrosine and five inert alanine residues. During SORI-CID and PSD, dissociation of [M,H], yielded c- and y-ions. Side-chain losses of formaldehyde (HCHO) from serine-containing peptides, acetaldehyde (CH3CHO) from threonine-containing peptides, and 4-methylene-2,5-cycohexadienone (C7H6O) from tyrosine-containing peptides were generally observed in the negative ion PSD and SORI-CID spectra. Side-chain loss occurs much less from tyrosine-containing peptides than from serine- and threonine-containing peptides. This is probably due to the bulky side chain of tyrosine, resulting in steric hindrance and poor geometry for dissociation reactions. Additionally, a selective cleavage leading to the elimination of the C-terminal residue from [M,H], was observed from the peptides with serine and threonine at the C-terminus. This cleavage does not occur in the dissociation of peptides with an amide group at the C-terminus or peptides with neutral or basic residues at the C-terminus. It also does not occur with tyrosine at the C-terminus. Both the C-terminal carboxylic acid group and the hydroxyl side chain of the C-terminal residue must play important roles in the mechanism of C-terminal residue loss. A mechanism involving both the C-terminal carboxylic acid group and a hydroxyl side chain of serine and threonine is proposed. Copyright © 2007 John Wiley & Sons, Ltd. [source] Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphinJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2004S. Banu Ozkan Abstract The energy function of a protein consists of a tremendous number of minima. Locating the global energy minimum (GEM) structure, which corresponds approximately to the native structure, is a severe problem in global optimization. Recently we have proposed a conformational search technique based on the Monte Carlo minimization (MCM) method of Li and Scheraga, where trial dihedral angles are not selected at random within the range [,180°,180°] (as with MCM) but with biased probabilities depending on the increased structure-energy correlations as the GEM is approached during the search. This method, called the Monte Carlo minimization with an adaptive bias (MCMAB), was applied initially to the pentapeptide Leu-enkephalin. Here we study its properties further by applying it to the larger peptide with bulky side chains, deltorphin (H-Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2). We find that on average the number of energy minimizations required by MCMAB to locate the GEM for the first time is smaller by a factor of approximately three than the number required by MCM,in accord with results obtained for Leu-enkephalin. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 565,572, 2004 [source] Multiple morphologies from a novel diblock copolymer containing dendronized polymethacrylate and linear poly(ethylene oxide)JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2005Cai-Xia Cheng Abstract A novel amphiphilic diblock copolymer, consisting of dendronized polymethacrylate- b -poly(ethylene oxide), was synthesized via atom transfer radical polymerization; from it, micellelike aggregates of various morphologies, prepared under near-equilibrium conditions, were studied with transmission electron microscopy and scanning electron microscopy. The effects of various factors on the aggregate morphologies of the amphiphilic copolymer, such as the water content, the copolymer concentration, and the type of common solvent, were investigated systematically. The unique architecture of the block copolymer led to morphological variety and peculiarities such as dendritic and shuttle-shaped aggregates, which could be attributed to the effective packing of the bulky side chains, that is, another driving force for the aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2291,2297, 2005 [source] Enantiomer discrimination of peptides by tandem mass spectrometry: influence of the peptide sequence on chiral recognitionRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2004Christoph Czerwenka The enantiomer discrimination of peptides by electrospray ionization tandem mass spectrometry is described. A cinchona alkaloid derivative, tert -butylcarbamoylquinine, is used as chiral selector. The chiral selector forms diastereomeric complexes with the peptide enantiomers in the liquid phase (methanolic solution), which are then transferred to the gas phase, where their dissociation behaviour is studied in an ion-trap mass spectrometer. Different degrees of dissociation of the diastereomeric complexes allow for the discrimination of the peptide enantiomers. The influence of the peptide sequence on enantiomer discrimination is discussed and molecular recognition information is derived by comparing the results obtained for related peptides. For dipeptides, small amino acid residues at the N-terminus and bulky side chains at the C-terminus were found to enhance chiral recognition, while for tripeptides the effects were rather irregular. Copyright © 2004 John Wiley & Sons, Ltd. [source] |