Bulk Aqueous Phase (bulk aqueous + phase)

Distribution by Scientific Domains


Selected Abstracts


Photophysics in Motionally constrained Bioenvironment: Interactions of Norharmane with Bovine Serum Albumin,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005
Arabinda Mallick
ABSTRACT Steady-state photophysics of norharmane (NHM), a bioactive alkaloid, has been studied in the presence of a model transport protein, bovine serum albumin (BSA). The emission spectrum undergoes a remarkable change upon addition of BSA to the aqueous solution of NHM in buffer. Addition of BSA leads to a marked increase in the fluorescence anisotropy of the neutral species of NHM, although the fluorescence anisotropy for the cationic species is almost invariant to BSA addition, suggesting that the neutral species is located in a motionally restricted environment of BSA, whereas the cationic species remains in the bulk aqueous phase. The binding constant (K) and free energy change (,G) for the probe-protein binding have been calculated from the fluorescence data. Light has been thrown on the action of urea on protein-bound NHM. The denaturation study suggests that the protein, in its native form, binds with NHM. Polarity of the microenvironment around the probe has been determined from a comparison of the fluorescence properties of the two prototropic species of NHM in water-dioxane mixture with varying composition. [source]


Carbon nanotube clusters as universal bacterial adsorbents and magnetic separation agents

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Hyung-Mo Moon
Abstract The magnetic susceptibility and high bacterial affinity of carbon nanotube (CNT) clusters highlight their great potential as a magnetic bio-separation agent. This article reports the CNT clusters' capability as "universal" bacterial adsorbents and magnetic separation agents by designing and testing a multiwalled carbon nanotube (MWNT) cluster-based process for bacterial capturing and separation. The reaction system consisted of large clusters of MWNTs for bacterial capture and an external magnet for bio-separation. The designed system was tested and optimized using Escherichia coli as a model bacterium, and further generalized by testing the process with other representative strains of both gram-positive and gram-negative bacteria. For all strains tested, bacterial adsorption to MWNT clusters occurred spontaneously, and the estimated MWNT clusters' adsorption capacities were nearly the same regardless of the types of strains. The bacteria-bound MWNT clusters also responded almost instantaneously to the magnetic field by a rare-earth magnet (0.68 Tesla), and completely separated from the bulk aqueous phase and retained in the system. The results clearly demonstrate their excellent potential as highly effective "universal" bacterial adsorbents for the spontaneous adsorption of any types of bacteria to the clusters and as paramagnetic complexes for the rapid and highly effective magnetic separations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Protein Refolding Mediated by Reverse Micelles of Cibacron Blue F-3GA Modified Nonionic Surfactant

BIOTECHNOLOGY PROGRESS, Issue 2 2006
Xiao-Yue Wu
An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n -hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3,3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl2. Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery. [source]


Importance of Interfacial Adsorption in the Biphasic Hydroformylation of Higher Olefins Promoted by Cyclodextrins: A Molecular Dynamics Study at the Decene/Water Interface

CHEMISTRY - A EUROPEAN JOURNAL, Issue 7 2007
Nicolas Sieffert
Abstract We report herein a molecular dynamics study of the main species involved in the hydroformylation of higher olefins promoted by cyclodextrins in 1-decene/water biphasic systems at a temperature of 350,K. The two liquids form a well-defined sharp interface of approximately 7,Å width in the absence of solute; the decene molecules are generally oriented "parallel" to the interface where they display transient contacts with water. We first focused on rhodium complexes bearing water-soluble TPPTS3, ligands (where TPPTS3, represents tris(m -sulfonatophenyl)phosphine) involved in the early steps of the reaction. The most important finding concerned the surface activity of the "active" form of the catalyst [RhH(CO)(TPPTS)2]6,, the [RhH(CO)2(TPPTS)2]6, complex, and the key reaction intermediate [RhH(CO)(TPPTS)2(decene)]6, (with the olefin ,-coordinated to the metal center) which are adsorbed at the water side of the interface in spite of their ,6 charge. The free TPPTS3, ligands themselves are also surface-active, whereas the ,9 charged catalyst precursor [RhH(CO)(TPPTS)3]9, prefers to be solubilized in water. The role of cyclodextrins was then investigated by performing simulations on 2,6-dimethyl-,-cyclodextrin ("CD") and its inclusion complexes with the reactant (1-decene), a reaction product (undecanal), and the corresponding key reaction intermediate [RhH(CO)(TPPTS)2(decene)]6, as guests; they were all shown to be surface-active and prefer the interface over the bulk aqueous phase. These results suggest that the biphasic hydroformylation of higher olefins takes place "right" at the interface and that the CDs promote the "meeting" of the olefin and the catalyst in this peculiar region of the solution by forming inclusion complexes "preorganized" for the reaction. Our results thus point to the importance of adsorption at the liquid/liquid interface in this important phase-transfer-catalyzed reaction. [source]