Distribution by Scientific Domains

Kinds of Bulge

  • galactic bulge

  • Terms modified by Bulge

  • bulge region

  • Selected Abstracts

    RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes

    Y. Tsapras
    Abstract RoboNet-II uses a global network of robotic telescopes to perform follow-up observations of microlensing events in the Galactic Bulge. The current network consists of three 2 m telescopes located in Hawaii and Australia (owned by Las Cumbres Observatory) and the Canary Islands (owned by Liverpool John Moores University). In future years the network will be expanded by deploying clusters of 1 m telescopes in other suitable locations. A principal scientific aim of the RoboNet-II project is the detection of cool extra-solar planets by the method of gravitational microlensing. These detections will provide crucial constraints to models of planetary formation and orbital migration. RoboNet-II acts in coordination with the PLANET microlensing follow-up network and uses an optimization algorithm ("web-PLOP") to select the targets and a distributed scheduling paradigm (eSTAR) to execute the observations. Continuous automated assessment of the observations and anomaly detection is provided by the ARTEMiS system (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

    Bulges versus discs: the evolution of angular momentum in cosmological simulations of galaxy formation

    Jesus Zavala
    ABSTRACT We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies generated in the N -body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disc-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disc-dominated object. We find that the specific angular momentum of the disc-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear theory, but 90 per cent of it is rapidly lost as pre-galactic fragments, into which gas had cooled efficiently, merge, transferring their orbital angular momentum to the outer halo by tidal effects. The disc-dominated galaxy avoids this fate because the strong feedback reheats the gas, which accumulates in an extended hot reservoir and only begins to cool once the merging activity has subsided. Our analysis lends strong support to the classical theory of disc formation whereby tidally torqued gas is accreted into the centre of the halo conserving its angular momentum. [source]

    Stabilisation of RNA Bulges by Oligonucleotide Complements Containing an Adenosine Analogue

    CHEMBIOCHEM, Issue 11 2003
    Annemieke Madder
    Abstract Incorporation of 2,-deoxy-2,- , -(1-naphthylmethyl)tubercidin into an oligodeoxyribonucleotide mostly has little or a slightly negative effect on the Tmvalues of complexes with DNA complements. With the same naphthylmethyl-substituted nucleoside at the 3,-end of a 2,-O-methyloligoribonucleotide, however, a stabilisation of 1,2,°C in the corresponding complexes with both DNA and RNA is observed. When the target sequence is an RNA fragment forming a two- or three-nucleotide bulge, complexes with (naphthylmethyl)tubercidin-modified oligodeoxyribonucleotides, as well as with the corresponding 2,-O-methyloligoribonucleotides, give stabilisations of 1,2,°C for the three-nucleotide bulge and of almost 4,°C for the two-nucleotide bulge. This stabilisation is specific to RNA, since the corresponding complexes with the DNA fragments do not display this effect. Thus, the (naphthylmethyl)tubercidin-containing oligonucleotides are the first reported oligonucleotide modifications that specifically stabilise bulged RNA. [source]

    Ultrastructural changes in skeletal muscle of the tail of the lizard Hemidactylus mabouia immediately following autotomy

    ACTA ZOOLOGICA, Issue 4 2010
    Tomaz Henrique Araújo
    Abstract Araújo, T.H., Faria, F.P., Katchburian, E. and Freymüller, E. (2009). Ultrastructural changes in skeletal muscle of the tail of the lizard Hemidactylus mabouia immediately following autotomy. ,Acta Zoologica (Stockholm) 91: 440,446. Although autotomy and subsequent regeneration of lizard tails has been extensively studied, there is little information available on ultrastructural changes that occur to the muscle fibers at the site of severance. Thus, in the present study, we examine the ultrastructure of the musculature of the remaining tail stump of the lizard Hemidactylus mabouia immediately after autotomy. Our results show that exposed portions of the skeletal muscle fibers of the stump that are unprotected by connective tissue bulge to produce large mushroom-like protrusions. These exposed portions show abnormal structure but suffer no leakage of cytoplasmic contents. Many small and large vesicular structures appeared between myofibrils in the interface at this disarranged region (distal) and the other portion of the fibers that remain unchanged (proximal). These vesicles coalesce, creating a gap that leads to the release of the mushroom-like protrusion. So, our results showed that after the macroscopic act of autotomy the muscular fibers release part of the sarcoplasm as if a second and microscopic set of autotomic events takes place immediately following the macroscopic act of autotomy. Presumably these changes pave the way for the formation of a blastema and the beginning of regeneration. [source]

    Twisted Intercalating Nucleic Acids , Intercalator Influence on Parallel Triplex Stabilities

    Vyacheslav V. Filichev
    Abstract Phosphoramidites of several new twisted intercalating nucleic acid (TINA) monomers and the previously discovered (R)-1- O -[4-(1-pyrenylethynyl)phenylmethyl]glycerol (1) were synthesized and used in DNA synthesis. Stabilization of Hoogsteen-type triplexes was observed in cases of insertion of the novel (R)-1- O -[3-(naphthalen-1-ylethynyl)phenylmethyl]glycerol (2) as a bulge into homopyrimidine oligodeoxynucleotides (ONs), whereas phenylethynyl and 4-(biphenylylethynyl) derivatives of TINAs resulted in destabilization of parallel triplexes relative to the wild-type triplex. It was concluded that TINA monomers should possess at least two fused phenyl rings attached through the triple bond at the 4-position of bulged (R)-1- O -(phenylmethyl)glycerol in homopyrimidine ONs in order to stabilize parallel triplexes. Slight destabilization of DNA/DNA Watson,Crick type duplexes (,Tm = 1.0,4.5 °C) was detected for 2 inserted as a bulge, while RNA/DNA duplexes and duplexes with other TINA analogues were considerably destabilized (,Tm > 6.0 °C). In cases of double insertion of 1 opposite to base inversions in dsDNA, the thermal stabilities of the triplexes were higher than that of the wild-type triplex, which is a new solution to overcome the problem of targeting homopurine stretches with single base pair inversions. A DNA three-way junction was considerably stabilized (,Tm in a range of 10.0,15.5 °C) upon insertion of TINA monomers in the junction point as a bulge. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]

    In vitro expansion of DNA triplet repeats with bulge binders and different DNA polymerases

    FEBS JOURNAL, Issue 18 2008
    Di Ouyang
    The expansion of DNA repeat sequences is associated with many genetic diseases in humans. Simple bulge DNA structures have been implicated as intermediates in DNA slippage within the DNA repeat regions. To probe the possible role of bulged structures in DNA slippage, we designed and synthesized a pair of simple chiral spirocyclic compounds [Xi Z, Ouyang D & Mu HT (2006) Bioorg Med Chem Lett16, 1180,1184], DDI-1A and DDI-1B, which mimic the molecular architecture of the enediyne antitumor antibiotic neocarzinostatin chromophore. Both compounds strongly stimulated slippage in various DNA repeats in vitro. Enhanced slippage synthesis was found to be synchronous for primer and template. CD spectra and UV thermal stability studies supported the idea that DDI-1A and DDI-1B exhibited selective binding to the DNA bulge and induced a significant conformational change in bulge DNA. The proposed mechanism for the observed in vitro expansion of long DNA is discussed. [source]

    Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes

    GENES TO CELLS, Issue 12 2002
    Yoshiya Ikawa
    Background: The A-rich bulge of the group I intron ribozyme, a highly conserved structural element in its P5 peripheral region, plays a significant role in activating the ribozyme. The bulge has been known to interact with the P4 stem forming P4 XJ6/7 base-triples in the conserved core. The base-triples by themselves have also been identified as a distinctive element responsible for enhancing the activity of the ribozyme. Results: A weakly active variant of the Tetrahymena ribozyme lacking the P5 extension was dramatically activated by the addition of an A-rich bulge at the peripheral region, or by replacement of the original P4 XJ6/7 base-triples in the core structure with more stabilized isosteric ones. Biochemical analyses showed that the two methods of activation affect the ribozyme differently. Conclusions: The long-range interaction between the A-rich bulge and P4 or additionally stabilized P4 XJ6/7 base-triples can contribute dramatically to activation of the Tetrahymena ribozyme. Both improve the kcat value, which represents the rate of the limiting step of the ribozyme reaction when its binding site is saturated with GTP. However, the bulge or the modified base-triples gave a moderate reduction or considerable increase, respectively, to the Km(GTP) value. [source]

    Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, China

    GLOBAL ECOLOGY, Issue 6 2003
    Jun Sheng Li
    ABSTRACT Aim, Small mammal species richness and relative abundance vary along elevational gradients, but there are different patterns that exist. This study reports the patterns of distribution and abundance of small mammals along the broader elevational gradient of Mt. Qilian range. Location, The study was conducted in the Mt. Qilian range, north-western China, from June to August 2001. Methods, Removal trapping was conducted using a standardized technique at 7 sites ranging between 1600 and 3900 m elevation within three transects. Correlation, regression and graphical analyses were used to evaluate the diversity patterns along this elevational gradient. Results, ,In total, 586 individuals representing 18 nonvolant small mammal species were collected during 20 160 trap nights. Species composition was different among the three transects with 6 (33%) of the species found only within one transect. Elevational distribution and relative abundance of small rodents showed substantial spatial variation, with only 2 species showing nonsignificant capture frequencies across elevations. Despite these variations, some general patterns of elevational distribution emerged: humped-shape relationships between species diversity and elevation were noted in all three transects with diversity peaks at middle elevations. In addition, relative abundance was negatively correlated with elevation. Conclusions, Results indicate that maximum richness and diversity of nonvolant small mammals occurred at mid-elevations where several types of plants reached their maximum diversity and primary productivity, and where rainfall and humidity reached a maximum. It is demonstrated that the mid-elevation bulge is a general feature of at least a large portion of the biota on the Mt. Qilian range. [source]

    Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts

    Briana C. Gleason
    Background:, The mechanisms whereby melanocytes populate the epidermis and developing hair follicles during embryogenesis are incompletely understood. Recent evidence implicates an intermediate mesenchymal stage in this evolutionary process in which HMB-45-positive melanocyte precursors (,melanoblasts') exist both in intradermal as well as intraepithelial and intrafollicular compartments. The melanocyte master transcriptional regulator, microphthalmia transcription factor (MITF), identifies mature melanocytes as well as melanocyte precursor stem cells that reside in the bulge region of the hair follicle. Methods:, To better define the use of MITF expression in the evaluation of melanocyte ontogeny, human embryonic and fetal skin samples (n = 28) at 6,24 weeks gestation were studied immunohistochemically for expression of MITF and Mart-1. Adjacent step sections were evaluated to correlate staining patterns with cell localization in the intraepidermal, intrafollicular and intradermal compartments. Results:, At 6,8 weeks, MITF and Mart-1-positive cells were primarily intradermal with only rare positive cells in the epidermis. By 12,13 weeks, most of these cells had migrated into the epidermis, predominantly the suprabasal layers. Between 15,17 weeks, these cells localized to the basal layer and colonized developing hair follicles. Rare intradermal MITF and Mart-1 positive cells were found as late as week 20. At 18,24 weeks, MITF and Mart-1 positive cells were identified in the outer root sheath, bulge, and follicular bulge epithelium, in addition to the epidermis. Unexpectedly, weak but diffuse nuclear MITF expression was also present in the keratinocytes of the bulge area. Conclusions:, The in situ migratory fate of MITF/Mart-1-expressing cells in fetal skin involves a well-defined progression from intradermal to intraepidermal to intrafollicular localization. Occasional intradermal melanocytes may persist after the intraepithelial stages are completed, a finding of potential significance to melanocytic proliferations that may arise de novo within the dermis. Because MITF may play a role in stem cell maintenance, the presence of MITF in bulge epithelial cells suggests that it may be a novel marker for follicular stem cells of both epithelial and melanocytic lineage. [source]

    Fountain flow revisited: The effect of various fluid mechanics parameters

    AICHE JOURNAL, Issue 5 2010
    Evan Mitsoulis
    Abstract Numerical simulations have been undertaken for the benchmark problem of fountain flow present in injection-mold filling. The finite element method (FEM) is used to provide numerical results for both cases of planar and axisymmetric domains under laminar, isothermal, steady-state conditions for Newtonian fluids. The effects of inertia, gravity, surface tension, compressibility, slip at the wall, and pressure dependence of the viscosity are all considered individually in parametric studies covering a wide range of the relevant parameters. These results extend previous ones regarding the shape of the front, and in particular the centerline front position, as a function of the dimensionless parameters. The pressures from the simulations have been used to compute the excess pressure losses in the system (front pressure correction or exit correction). Inertia leads to highly extended front positions relative to the inertialess Newtonian values, which are 0.895 for the planar case and 0.835 for the axisymmetric one. Gravity acting in the direction of flow shows the same effect, while gravity opposing the flow gives a reduced bulge of the fountain. Surface tension, slip at the wall, and compressibility, all decrease the shape of the front. Pressure-dependence of the viscosity leads to increased front position as a corresponding dimensionless parameter goes from zero (no effect) to higher values of the pressure-shift factor. The exit correction increases monotonically with inertia, compressibility, and gravity, while it decreases monotonically with slip and pressure-dependence of the viscosity. Contour plots of the primary variables (velocity-pressure) show interesting trends compared with the base case (zero values of the dimensionless parameters and of surface tension). © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]

    Absorber intercooling in CO2 absorption by piperazine-promoted potassium carbonate

    AICHE JOURNAL, Issue 4 2010
    Jorge M. Plaza
    Abstract Intercooling was evaluated as a process option in CO2 absorption by piperazine (PZ) promoted potassium carbonate. The system performance with 4.5 m K+/4.5 m PZ was simulated by a model in Aspen Plus® RateSepÔ. The absorber was evaluated for use with a double matrix stripper by optimizing the position of the semilean feed and intercooling stages to maximize CO2 removal. Additionally, a simple absorber system was modeled to observe the effect of intercooling on systems with variable CO2 lean loading. Intercooling increases CO2 removal by as much as 10% with the double matrix configuration. With a simple absorber, the effectiveness of intercooling depends on solvent rate. Near a critical liquid/gas ratio (L/G) there is a large improvement with intercooling. This is related to the position of the temperature bulge. An approximation is proposed to estimate the critical L/G where intercooling may maximize removal. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]

    Surface topology and structural integrity of the Theromyzon tessulatum (Annelida: Hirudinea: Glossiphoniidae) cocoon

    Jon'elle Coleman
    Abstract Cocoons secreted by the aquatic leech Theromyzon tessulatum comprise a tubular, membranous ovoid, sealed at each end by a glue-like substance, called an operculum. Scanning electron microscopy showed surface features of the T. tessulatum cocoon that included a circuitous bulge, cups that conformed to the shape of embryos, relief folds that radiated from opercula, and asymmetric distributions of protuberances on the upper aspect of the cocoon surface. The structural integrity of the T. tessulatum cocoon was assessed after exposure to a variety of denaturing conditions (e.g., extreme heat, detergents, acids). Although both the fibrous cocoon membrane and opercula were strikingly resilient, the membrane/operculum boundary appeared to be the weakest structural component of the cocoon, consistent with its functional role as an escape hatch for juvenile leeches. The operculum itself was more sensitive to denaturation than the cocoon membrane, and thus was probably the source of a major protein component isolated from the T. tessulatum cocoon (i.e., Tcp; Theromyzon cocoon protein). J. Morphol., 2008. © 2008 Wiley-Liss, Inc. [source]

    The peristomatic structures of Lithobiomorpha (Myriapoda, Chilopoda): Comparative morphology and phylogenetic significance

    Markus Koch
    Abstract A comparative survey of the epipharynx and hypopharynx of lithobiomorph centipedes by light and scanning electron microscopy examines 18 species that sample the major groups of both families, the Lithobiidae and Henicopidae. Cladistic analysis of 11 characters of the peristomatic structures together with 29 additional morphological characters serves as a basis for interpreting the evolution of the lithobiomorph peristomatic structures. Scutigeromorpha is used for outgroup comparison in the framework of a homology scheme for the basic components of the epi- and hypopharynx. Compared to other chilopods, the monophyly of Lithobiomorpha is supported by a row of distinctive bottle-shaped gland openings at the border between the labral and clypeal parts of the epipharynx, as well as by a distinctive shape of the hypopharynx. Paired rows of elongate spines on the clypeal part of the epipharynx are an apomorphic character of Lithobiidae. The transformation of these spine rows into a few groups of branching spines is characteristic for the Monotarsobius group sensu Verhoeff. Similar groups of branching clypeal spines characterize the Anopsobiinae within Henicopidae, whereas Henicopinae possess a dense cluster of short, simple spines instead. The recently described genus Dzhungaria is resolved closer to Henicopinae than to Anopsobiinae, a hypothesis supported by a field of grooves on the medial labral part of the epipharynx. Monophyly of Henicopidae does not receive unique support from the peristomatic structures although two homoplastic characters contribute to this node; among these, the reduction of a median spine field between clypeal and labral parts of the epipharynx to a narrow transverse band also supports a close relationship between the Ezembius group and Hessebius within Lithobiidae. An Ezembius + Hessebius clade is additionally supported by the absence of a transverse bulge between the clypeal and labral parts of the epipharynx, a character otherwise present in all lithobiomorph species studied so far. Lithobius is resolved as polyphyletic, with different species being most closely related to such genera as Australobius, Hessebius and Pleurolithobius. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source]

    Embryonic development of Galloisiana yuasai Asahina, with special reference to external morphology (Insecta: Grylloblattodea)

    Toshiki Uchifune
    Abstract The embryogenesis of Grylloblattodea, one of the most primitive of the polyneopteran orders, is described using Galloisiana yuasai with special reference to external morphology. The egg membranes are characterized by an endochorion crossed by numerous vertical aeropyles and a fairly thin vitelline membrane, features shared by Mantophasmatodea. The inner layer formation is of the fault type. Serosal elements in the amnioserosal fold differentiate into hydropylar cells, to function in water absorption together with specialized amniotic structures, i.e., an amniotic strand and a thickened amnion. The germ band is of the short germ type. The germ band immerses deep into the yolk after its full elongation along the egg surface, and in this respect blastokinesis closely resembles that of Mantophasmatodea. The embryological features, i.e., those on egg membranes and blastokinesis, may suggest a closer affinity of Grylloblattodea and Mantophasmatodea. Appendages, ectodermal invaginations, and sternal and pleural sclerites are discussed in the light of serial homology, to provide a new basis for elucidating the insect body plan. Appendages are divided into the proximal coxopodite and distal telopodite, the former being divided further into the subcoxa and coxa. Subcoxal and coxal elements are identified in the mandible as well as in the abdominal appendages. The subcoxa is divided into the epimeron and episternum by the pleural suture in thoracic segments. Likewise, in the abdominal segments the subcoxa is divided into two, although the homologs of the epimeron and episternum are not sclerotized, and in the labial segment the subcoxal derivative or the postmentum is divided into the submentum and mentum. Two coxal endites bulge out from the medial side of the gnathal appendages. The mandibular molar and incisor, maxillary lacinia and galea, and labial glossa and paraglossa are serially homologous with each other. In the thoracic segments the original embryonic sternum or "protosternum" is largely replaced by subcoxal elements, and merely remains as a small anterior presternum and a posterior spinasternum. A major part of the venter is represented by the derivatives of the episternum such as an extensive basisternum, katepisternum, and trochantin and the medial element of the epimeron. The pleuron is derived from the episternal elements or the anepisternum and preepisternum, which bears a spiracle in the mesothorax and metathorax, and the lateral element of the epimeron. The homolog of the preepisternum in the prothorax is the cervical sclerite, but with no spiracle developed. A median ventral invagination arises in the thoracic segments as a spina, and the homolog of the spina develops into the eversible sac in the first abdominal segment. J. Morphol. © 2005 Wiley-Liss, Inc. [source]

    Ultrastructural study of the precursor to fungiform papillae prior to the arrival of sensory nerves in the fetal rat

    Shin-ichi Iwasaki
    Abstract The structure of precursors to fungiform papillae without taste buds, prior to the arrival of sensory nerve fibers at the papillae, was examined in the fetal rat on embryonic day 13 (E13) and 16 (E16) by light and transmission electron microscopy in an attempt to clarify the mechanism of morphogenesis of these papillae. At E13, a row of rudiments of fungiform papillae was arranged along both sides of the median sulcus of the lingual dorsal surface, and each row consisted of about 10 rudiments. There was no apparent direct contact between papillae rudiments and sensory nerves at this time. Bilaterally towards the lateral side of the tongue, adjacent to these first rudiments of fungiform papillae, a series of cord-like invaginations of the dorsal epithelium of the tongue into the underlying connective tissue, representing additional papillary primordia parallel to the first row, was observed. The basal end of each invagination was enlarged as a round bulge, indented at its tip by a mound of fibroblasts protruding into the bulge. At E16 there was still no apparent direct contact between rudiments of fungiform papillae and sensory nerves. Each rudiment apically contained a spherical core of aggregating cells, which consisted of a dense assembly of large, oval cells unlike those in other areas of the lingual dorsal epithelium. The differentiation of these aggregated cells was unclear. The basal lamina was clearly recognizable between the epithelium of the rudiment of fungiform papillae and the underlying connective tissue. Spherical structures, which appeared to be sections of the cord-like invaginations of the lingual epithelium that appeared on E13, were observed within the connective tissue separated from the dorsal lingual epithelium. Transverse sections of such structures revealed four concentric layers of cells: a central core, an inner shell, an outer shell, and a layer of large cells. Bundles of fibers were arranged in the central core, and the diameters of bundles varied somewhat depending on the depth of the primordia within the connective tissue and their distance from the median sulcus. Ultrastructural features of cells in the outer shell differed significantly in rudiments close to the lingual epithelium as compared to those in deeper areas of connective tissue. Around the outer shell there was a large-cell layer consisting of one to three layers of radially elongated, oval cells that contained many variously sized, electron-dense, round granules. Large numbers of fibroblasts formed dense aggregates around each spherical rudiment, and were separated by the basal lamina from the large-cell epithelial layer. Progressing from deep-lying levels of the rudiments of the papillae to levels close to the lingual surface epithelium, the central core, inner shell, and outer shell gradually disappeared from the invaginated papillary cords. J. Morphol. 250:225,235, 2001. © 2001 Wiley-Liss, Inc. [source]

    ,-Hairpin folding and stability: molecular dynamics simulations of designed peptides in aqueous solution

    Clara M. Santiveri
    Abstract The structural properties of a 10-residue and a 15-residue peptide in aqueous solution were investigated by molecular dynamics simulation. The two designed peptides, SYINSDGTWT and SESYINSDGTWTVTE, had been studied previously by NMR at 278 K and the resulting model structures were classified as 3:5 ,-hairpins with a type I + G1 ,-bulge turn. In simulations at 278 K, starting from the NMR model structure, the 3:5 ,-hairpin conformers proved to be stable over the time period evaluated (30 ns). Starting from an extended conformation, simulations of the decapeptide at 278 K, 323 K and 353 K were also performed to study folding. Over the relatively short time scales explored (30 ns at 278 K and 323 K, 56 ns at 353 K), folding to the 3:5 ,-hairpin could only be observed at 353 K. At this temperature, the collapse to ,-hairpin-like conformations is very fast. The conformational space accessible to the peptide is entirely dominated by loop structures with different degrees of ,-hairpin character. The transitions between different types of ordered loops and ,-hairpins occur through two unstructured loop conformations stabilized by a single side-chain interaction between Tyr2 and Trp9, which facilitates the changes of the hydrogen-bond register. In agreement with previous experimental results, ,-hairpin formation is initially driven by the bending propensity of the turn segment. Nevertheless, the fine organization of the turn region appears to be a late event in the folding process. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source]

    Radiative transfer in disc galaxies , IV.

    The effects of dust attenuation on bulge, disc structural parameters
    ABSTRACT Combining Monte Carlo radiative transfer simulations and accurate 2D bulge/disc decompositions, we present a new study to investigate the effects of dust attenuation on the apparent structural properties of the disc and bulge of spiral galaxies. We find that dust affects the results from such decompositions in ways which cannot be identified when one studies dust effects on bulge and disc components separately. In particular, the effects of dust in galaxies hosting pseudo-bulges might be different from those in galaxies hosting classical bulges, even if their dust content is identical. Confirming previous results, we find that disc scalelengths are overestimated when dust effects are important. In addition, we also find that bulge effective radii and Sérsic indices are underestimated. Furthermore, the apparent attenuation of the integrated disc light is underestimated, whereas the corresponding attenuation of bulge light is overestimated. Dust effects are more significant for the bulge parameters, and, combined, they lead to a strong underestimation of the bulge-to-disc ratio, which can reach a factor of 2 in the V band, even at relatively low galaxy inclinations and dust opacities. Nevertheless, it never reaches factors larger than about 3, which corresponds to a factor of 2 in bulge-to-total ratio. Such effect can have an impact on studies of the black hole/bulge scaling relations. [source]

    Structure and dynamics of galaxies with a low surface-brightness disc , I. The stellar and ionized-gas kinematics

    A. Pizzella
    ABSTRACT Photometry and long-slit spectroscopy are presented for a sample of six galaxies with a low surface-brightness stellar disc and a bulge. The characterizing parameters of the bulge and disc components were derived by means of a two-dimensional photometric decomposition of the images of the sample galaxies. Their surface-brightness distribution was assumed to be the sum of the contribution of a Sérsic bulge and an exponential disc, with each component being described by elliptical and concentric isophotes of constant ellipticity and position angle. The stellar and ionized-gas kinematics were measured along the major and minor axes in half of the sample galaxies, whereas the other half was observed only along two diagonal axes. Spectra along two diagonal axes were obtained also for one of the objects with major and minor axis spectra. The kinematic measurements extend in the disc region out to a surface-brightness level ,R, 24 mag arcsec,2, reaching in all cases the flat part of the rotation curve. The stellar kinematics turns out to be more regular and symmetric than the ionized-gas kinematics, which often shows the presence of non-circular, off-plane and non-ordered motions. This raises the question about the reliability of the use of the ionized gas as the tracer of the circular velocity in the modelling of the mass distribution, in particular in the central regions of low surface-brightness galaxies. [source]

    Spatial distribution of luminous X-ray binaries in spiral galaxies

    Zhao-yu Zuo
    ABSTRACT We have modelled the spatial distribution of luminous X-ray binaries (XRBs) in spiral galaxies that are like the Milky Way using an evolutionary population synthesis code. In agreement with previous theoretical expectations and observations, we find that both high- and low-mass XRBs show clear concentrations towards the galactic plane and bulge. We also compare XRB distributions under the galactic potential with a dark matter halo and the modified Newtonian dynamics potential, and we suggest that the difference may serve as potential evidence to discriminate between these two types of model. [source]

    AGB variables and the Mira period,luminosity relation

    Patricia A. Whitelock
    ABSTRACT Published data for large-amplitude asymptotic giant branch variables in the Large Magellanic Cloud (LMC) are re-analysed to establish the constants for an infrared (K) period,luminosity relation of the form MK=,[log P, 2.38]+,. A slope of ,=,3.51 ± 0.20 and a zero-point of ,=,7.15 ± 0.06 are found for oxygen-rich Miras (if a distance modulus of 18.39 ± 0.05 is used for the LMC). Assuming this slope is applicable to Galactic Miras we discuss the zero-point for these stars using the revised Hipparcos parallaxes together with published very long baseline interferometry (VLBI) parallaxes for OH masers and Miras in globular clusters. These result in a mean zero-point of ,=,7.25 ± 0.07 for O-rich Galactic Miras. The zero-point for Miras in the Galactic bulge is not significantly different from this value. Carbon-rich stars are also discussed and provide results that are consistent with the above numbers, but with higher uncertainties. Within the uncertainties there is no evidence for a significant difference between the period,luminosity relation zero-points for systems with different metallicity. [source]

    The impact of radio feedback from active galactic nuclei in cosmological simulations: formation of disc galaxies

    Takashi Okamoto
    ABSTRACT In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological simulations of galaxy formation. We assume that a fraction of jet energy, which is generated by an AGN, is transferred to the surrounding gas as thermal energy. Combining a theoretical model of mass accretion on to black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider two distinct accretion modes: standard radiatively efficient thin accretion discs and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by theoretical models for jet production in accretion discs, we assume that only the RIAF is responsible for the AGN feedback. The focus of this paper is to investigate the interplay between galaxies and their central black holes during the formation of a disc galaxy. We find that, after an initial episode of bursting star formation, the accretion rate on to the central black hole drops so that the accretion disc switches to a RIAF structure. At this point, the feedback from the AGN becomes efficient and slightly suppresses star formation in the galactic disc and almost completely halts star formation in the bulge. This suppression of the star formation regulates mass accretion on to the black hole and associated AGN feedback. As a result, the nucleus becomes a stochastically fuelled low-luminosity AGN (Seyfert galaxy) with recurrent short-lived episodes of activity after the star bursts. During the ,on' events, the AGN produces reasonably powerful jets (radio-loud state) and is less luminous than the host galaxy, while in the ,off' phase, the nucleus is inactive and ,radio quiet'. Our model predicts several properties of the low-luminosity AGN including the bolometric luminosity, jet powers, the effect on kpc scale of the radio jet and the AGN lifetime, which are in broad agreement with observations of Seyfert galaxies and their radio activity. We also find that the ratios between the central black hole mass and the mass of the host spheroid at z= 0 are ,10,3 regardless of the strength of either supernova feedback or AGN feedback because the radiation drag model directly relates the star formation activity in the Galactic Centre and the mass accretion rate on to the central black hole. [source]

    The dynamical formation of LMXBs in dense stellar environments: globular clusters and the inner bulge of M31

    R. Voss
    ABSTRACT The radial distribution of luminous (LX > 1036 erg s,1) X-ray point sources in the bulge of M31 is investigated using archival Chandra observations. We find a significant increase in the specific frequency of X-ray sources, per unit stellar mass, within 1 arcmin from the centre of the galaxy. The radial distribution of surplus sources in this region follows the ,2* law, suggesting that they are low-mass X-ray binaries (LMXBs) formed dynamically in the dense inner bulge. We investigate dynamical formation of LMXBs, paying particular attention to the high-velocity regime characteristic for galactic bulges, which has not been explored previously. Our calculations suggest that the majority of the surplus sources are formed in tidal captures of black holes by main-sequence stars of low mass, M*, 0.3,0.4 M,, with some contribution of neutron star (NS) systems of same type. Due to the small size of the accretion discs, a fraction of such systems may be persistent X-ray sources. Some of the sources may be ultracompact X-ray binaries with helium star/white dwarf companions. We also predict a large number of faint transients, both NS and BH systems, within ,1 arcmin from the M31 galactic centre. Finally, we consider the population of dynamically formed binaries in Galactic globular clusters, emphasizing the differences between these two types of stellar environments. [source]

    Cold dark matter microhalo survival in the Milky Way

    G. W. Angus
    ABSTRACT A special purpose N -body simulation has been built to understand the tidal heating of the smallest dark matter substructures (10,6 M, and 0.01 pc) from the grainy potential of the Milky Way due to individual stars in the disc and the bulge. To test the method, we first run simulations of single encounters of microhaloes with an isolated star, and compare with analytical predictions of the dark particle bound fraction as a function of impact parameter. We then follow the orbits of a set of microhaloes in a realistic flattened Milky Way potential. We concentrate on (detectable) microhaloes passing near the Sun with a range of pericentre and apocentre. Stellar perturbers near the orbital path of a microhalo would exert stochastic impulses, which we apply in a Monte Carlo fashion according to the Besançon model for the distribution of stars of different masses and ages in our Galaxy. Also incorporated are the usual pericentre tidal heating and disc shocking. We give a detailed diagnosis of typical microhaloes and find microhaloes with internal tangential anisotropy are slightly more robust than the ones with radial anisotropy. In addition, the dark particles generally go through of a random walk in velocity space and diffuse out of the microhaloes. We show that the typical destruction time-scales are strongly correlated with the stellar density averaged along a microhalo's orbit over the age of the stellar disc. We also present the morphology of a microhalo at several epochs which may hold the key to dark matter detections. We checked our results against different choices of microhalo mass, virial radius and anisotropy. [source]

    Detection of the irradiated donor in the LMXBs 4U 1636-536 (=V801 Ara) and 4U 1735-444 (=V926 Sco)

    J. Casares
    ABSTRACT Phase-resolved VLT spectroscopy of the bursting low-mass X-ray binaries 4U 1636-536/V801 Ara and 4U 1735-444/V926 Sco is presented. Doppler images of the N iii,4640 Bowen transition reveal compact spots which we attribute to fluorescent emission from the donor star and enable us to define a new set of spectroscopic ephemerides. We measure Kem= 277 ± 22 and 226 ± 22 km s,1 from the N iii spots in V801 Ara and V926 Sco, respectively, which represent strict lower limits to the radial velocity semi-amplitude of the donor stars. Our new ephemerides provide confirmation that light-curve maxima in V801 Ara and likely V926 Sco occur at superior conjunction of the donor star and hence photometric modulation is caused by the visibility of the X-ray heated donor. The velocities of He ii,4686 and the broad Bowen blend are strongly modulated with the orbital period, with phasing supporting emission dominated by the disc bulge. In addition, a reanalysis of burst oscillations in V801 Ara, using our spectroscopic T0, leads to K1= 90,113 km s,1. We also estimate the K -corrections for all possible disc flaring angles and present the first dynamical constraints on the masses of these X-ray bursters. These are K2= 360 ± 74 km s,1, f(M) = 0.76 ± 0.47 M, and q= 0.21,0.34 for V801 Ara and K2= 298 ± 83 km s,1, f(M) = 0.53 ± 0.44 M, and q= 0.05,0.41 for V926 Sco. Disc flaring angles ,, 12° and q, 0.26,0.34 are favoured for V801 Ara whereas the lack of K1 constraint for V926 Sco prevents tight constraints on this system. Although both binaries seem to have intermediate inclinations, the larger equivalent width of the narrow N iii line in V801 Ara at phase 0.5 relative to phase 0 suggests that it has the higher inclination of the two. [source]

    An improved model for contraction of dark matter haloes in response to condensation of baryons

    Marios Kampakoglou
    ABSTRACT The cooling of gas in the centres of dark matter haloes is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. Following Gnedin et al., we improve this model by modifying the assumed invariant from M(r)r to , where r and are the current and orbit-averaged particle positions. We explore the effect of the bulge in the inner regions of the halo for different values of the bulge-to-disc mass ratio. We find that the bulge makes the velocity curve rise faster in the inner regions of the halo. We present an analytical fitting curve that describes the velocity curve of the halo after dissipation. The results should be useful for dark matter detection studies. [source]

    A deep kinematic survey of planetary nebulae in the Andromeda galaxy using the Planetary Nebula Spectrograph

    H. R. Merrett
    ABSTRACT We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disc out to a radius of . Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m5007, 23.75, 3.5 mag into the PN luminosity function. We have identified emission-line objects associated with M31's satellites and other background galaxies. We have examined the data from the region tentatively identified as a new satellite galaxy, Andromeda VIII, comparing it to data in the other quadrants of the galaxy. We find that the PNe in this region have velocities that appear to be consistent with membership of M31 itself. The luminosity function of the surveyed PNe is well matched to the usual smooth monotonic function. The only significant spatial variation in the luminosity function occurs in the vicinity of M31's molecular ring, where the luminosities of PNe on the near side of the galaxy are systematically ,0.2 mag fainter than those on the far side. This difference can be explained naturally by a modest amount of obscuration by the ring. The absence of any difference in luminosity function between bulge and disc suggests that the sample of PNe is not strongly populated by objects whose progenitors are more massive stars. This conclusion is reinforced by the excellent agreement between the number counts of PNe and the R -band light. The number counts of kinematically selected PNe also allow us to probe the stellar distribution in M31 down to very faint limits. There is no indication of a cut-off in M31's disc out to beyond four scalelengths, and no signs of a spheroidal halo population in excess of the bulge out to 10 effective bulge radii. We have also carried out a preliminary analysis of the kinematics of the surveyed PNe. The mean streaming velocity of the M31 disc PNe is found to show a significant asymmetric drift out to large radii. Their velocity dispersion, although initially declining with radius, flattens out to a constant value in the outer parts of the galaxy. There are no indications that the disc velocity dispersion varies with PN luminosity, once again implying that the progenitors of PNe of all magnitudes form a relatively homogeneous old population. The dispersion profile and asymmetric drift results are shown to be mutually consistent, but require that the disc flares with radius if the shape of its velocity ellipsoid remains invariant. [source]

    Forming supermassive black holes by accreting dark and baryon matter

    Jian Hu
    ABSTRACT Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ,109 M, at high redshifts z(,6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z, 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z, 20,15, where ,0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective ,sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH, 109 M,; such SMBHs may form either by z, 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH,,b correlation inferred for nearby normal galaxies with ,b being the stellar velocity dispersion in the galactic bulge; in our scenario, the central SMBH formation precedes that of the galactic bulge. [source]

    Mira variables in the Galactic bulge with OGLE-II data

    Noriyuki Matsunaga
    ABSTRACT We have extracted a total of 1968 Mira variables from the Optical Gravitational Lensing Experiment II (OGLE-II) data base in the Galactic bulge region. Among them, 1960 are associated with 2 Micron All-sky Survey (2MASS) sources, and 1541 are further identified with Midcourse Space Exploration (MSX) point sources. Their photometric properties are compared with those of Mira variables in the Large and Small Magellanic Clouds. We have found that mass-losing stars with circumstellar matter are reddened such that the colour dependence of the absorption coefficient is similar to that of interstellar matter. We also discuss the structure of the bulge. The surface number density of the bulge Mira variables is well correlated with the 2.2-,m surface brightness obtained by the Cosmic Background Explorer (COBE) satellite. Using this relation, the total number of Mira variables in the bulge is estimated to be about 6 × 105. The log P,K relation of the Mira variables gives their space distribution which supports the well-known asymmetry of the bar-like bulge. [source]

    Quantitative morphological analysis of the Hubble Deep Field North and Hubble Deep Field South , I. Early- and late-type luminosity,size relations of galaxies out to z, 1

    I. Trujillo
    ABSTRACT Based on drizzled F606W and F814W images, we present quantitative structural parameters in the V -band rest-frame for all galaxies with z < 1 and I814(AB) < 24.5 mag in the Hubble Deep Fields North and South. Our structural parameters are based on a two-component surface brightness distribution using a Sérsic bulge and an exponential disc. Detailed simulations and comparisons with previous work are presented. The luminosity,size distribution of early-type galaxies is consistent with the hypothesis that their structural properties were already in place by z, 1 and have evolved passively since then; early-type galaxies were ,1.35(±0.1) mag brighter in rest-frame V -band luminosity at z, 0.7 than now. Compared with present-day late-type galaxies, those at z, 0.7 with LV > 0.2 × 1010 h,2 L, show a moderate decrease [,30(±10) per cent] in size [or interpreted differently, a decrease of ,0.77(±0.30) mag in the central surface brightness] at a given luminosity. Finally, we make a comparison of our results with the infall and hierarchical models. [source]

    Detailed comparison of the structures and kinematics of simulated and observed barred galaxies

    J. K. O'Neill
    ABSTRACT We examine the observable properties of simulated barred galaxies, including radial mass profiles, edge-on structure and kinematics, bar lengths and pattern speed evolution for detailed comparison to real systems. We have run several simulations in which bars are created through inherent instabilities in self-consistent simulations of a realistic disc+halo galaxy model with a disc-dominated, flat rotation curve. These simulations were run at high (N= 20 million particles) and low (N= 500 000 particles) resolution to test numerical convergence. We determine the pattern speeds in simulations directly from the phase angle of the bar versus time and the Tremaine,Weinberg method. Fundamental dynamics do not change between the high and low resolution, suggesting that convergence has been reached in this case. We find that the higher resolution is needed to simulate structural and kinematic properties accurately. The edge-on view of the higher-resolution system shows the bending instability and formation of a peanut-shaped bulge clearly. We determined bar lengths by different means to determine that the simulated bar is fast, with a corotation to bar length ratio of under 1.5. Simulated bars in these models form with pattern speeds slower than those observed and slow-down during their evolution. Dynamical friction between the bar and dark halo is responsible for this deceleration, as revealed by the transfer of angular momentum between the disc and the halo. However, even though the pattern speed is reduced at later times, the instantaneous scalelength of the disc has grown sufficiently for the bar motion to agree with many observations. By using a different model and simulation technique than other authors, we are able to compare the robustness of these methods. An animation of the face-on and edge-on views of the 20-million-particle simulation is available at http://www.astro.utoronto.ca/~oneill. [source]