| |||
Bromide Method (bromide + method)
Selected AbstractsContinuous intact cell detection and viability determination by CE with dual-wavelength detectionELECTROPHORESIS, Issue 2 2010Xiaomin Ren Abstract We introduce here a method for continuous intact cell detection and viability determination of individual trypan blue stained cells by CE with ultraviolet,visible dual-wavelength detection. To avoid cell aggregation or damage during electrophoresis, cells after staining were fixed with 4% formaldehyde and were continuously introduced into the capillary by EOF. The absorbance of a cell at 590,nm was used to determine its viability. An absorbance of two milli-absorbance unit at 590,nm was the clear cut-off point for living and dead Hela cells in our experiments. Good viability correlation between the conventional trypan blue staining assay and our established CE method (correlation coefficient, R2=0.9623) was demonstrated by analysis of cell mixtures with varying proportions of living and dead cells. The CE method was also used to analyze the cytotoxicity of methylmercury, and the results were in good agreement with the trypan blue staining assay and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide methods. Compared with the 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide method, our established CE method can be easily automated to report cell viability based on the state of individual cells. Tedious manual cell counting and human error due to investigator bias can be avoided by using this method. [source] Biocompatibility of various root canal filling materials ex vivoINTERNATIONAL ENDODONTIC JOURNAL, Issue 8 2008R. Scotti Abstract Aim, To evaluate the biocompatibility of a resin-based endodontic filler (RealSeal) using the indirect cytotoxicity test. Methodology, Human gingival fibroblasts were cultured ex vivo. Pellets of the materials to be tested were incubated for 24, 48, and 72 h at 37 °C under sterile conditions to obtain their eluates. The fibroblasts were exposed to either diluted (50%) or undiluted eluates for 24 h. A culture medium with foetal calf serum was added to the control wells. Cell viability was estimated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method. The data concerning cell viability were statistically analyzed using one-way anova test and Bonferroni multiple comparisons test. Results, Eluates obtained after 24 h of incubation with the resin filler did not reduce cellular viability. An increase in cellular viability, as compared with control cells, was observed in the gutta-percha group. The undiluted eluate from the polyether material was cytotoxic, causing an 82 ± 4% decrease in cellular viability. Eluates obtained after 48 h of incubation with the resin filler increased cellular viability, whereas the polyether significantly reduced viability. Gutta-percha did not cause any detectable change. After 72 h of incubation the eluate of the resin filler caused an increase in cellular viability, as did gutta-percha, whereas polyether caused a significant decrease. Conclusions, RealSeal resin filler was nontoxic in this laboratory model. Further investigations are necessary to verify its usefulness in clinical applications. [source] Isolation of DNA from genetically modified oils by fast protein liquid chromatographyINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2010Li Huang Summary In this study, a novel method of fast protein liquid chromatography (FPLC) anion exchange chromatography was developed for isolation of DNA from processed genetically modified (GM) oils. Four kinds of different GM edible oil had been chosen as model sample. Salmon DNA was used as the control sample to determine the pH values and NaCl in mobile phase buffer. Applying pH 8 and NaCl gradient 0.5,2 m were chosen for the DNA isolation. The quality and purity of isolated DNA were tested with agarose gel electrophoresis, scanned with UV absorbance spectra and amplified by polymerase chain reaction (PCR). The result indicated that the quantity of DNA isolated by FPLC was suitable for further PCR analyses. Furthermore, it is more effective and less time-consuming in comparison with cetyltrimethylammonium bromide method and High Pure GMO Sample Preparation Kit method. [source] Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancerCANCER, Issue 19 2009Shuiping Tu MD Abstract BACKGROUND: Gold (III) compounds have exhibited favorable antitumor properties both in vitro and in vivo. In a previous study, the authors reported that the novel gold (III) complex 1a (gold 1a) exhibited strong cytotoxicity in some tumor cell lines. In the current study, the effect of gold 1a was investigated on colon cancer cells. METHODS: The cytotoxicity of gold 1a was determined by using the 3-(4,5-dimethyl-2-thihazyl)-2,5-diphenyl-2H-tetrazolium bromide method. Flow cytometry was used to detect apoptosis and cell cycle. The expression of protein was evaluated by Western blot assay. Tumor growth in vivo was evaluated in nude mice. RESULTS: Gold 1a exhibited marked cytotoxic effects in vitro to human colon cancer, and the concentration of drug required to inhibit cell growth by 50% compared with control (IC50) values ranged from 0.2 ,M to 3.4 ,M, which represented 8.7-fold to 20.8-fold greater potency than that of cisplatin. Gold 1a significantly induced apoptosis and cell cycle arrest and cleaved caspase 3, caspase 7, and poly(ADP-ribose) polymerase; released cytochrome C, and up-regulated p53, p21, p27, and Bax. In vivo, intraperitoneal injection of gold 1a at doses of 1.5 mg/kg and 3.0 mg/kg significantly inhibited tumor cell proliferation, induced apoptosis, and suppressed colon cancer tumor growth. An acute toxicology study indicated that gold 1a at effective antitumor concentrations did not cause any toxic side effects in mice. CONCLUSIONS: The current results suggested that gold 1a may be a new potential therapeutic drug for colon cancer. Cancer 2009. © 2009 American Cancer Society. [source] |