Breakthrough Experiments (breakthrough + experiment)

Distribution by Scientific Domains


Selected Abstracts


Gas breakthrough experiments on fine-grained sedimentary rocks

GEOFLUIDS (ELECTRONIC), Issue 1 2002
A. Hildenbrand
Abstract The capillary sealing efficiency of fine-grained sedimentary rocks has been investigated by gas breakthrough experiments on fully water saturated claystones and siltstones (Boom Clay from Belgium, Opalinus Clay from Switzerland and Tertiary mudstone from offshore Norway) of different lithological compositions. Sand contents of the samples were consistently below 12%, major clay minerals were illite and smectite. Porosities determined by mercury injection lay between 10 and 30% while specific surface areas determined by nitrogen adsorption (BET method) ranged from 20 to 48 m2 g , 1. Total organic carbon contents were below 2%. Prior to the gas breakthrough experiments the absolute (single phase) permeability (kabs) of the samples was determined by steady state flow tests with water or NaCl brine. The kabs values ranged between 3 and 550 nDarcy (3 × 10,21 and 5.5 × 10,19 m2). The maximum effective permeability to the gas-phase (keff) measured after gas breakthrough on initially water-saturated samples extended from 0.01 nDarcy (1 × 10,23 m2) up to 1100 nDarcy (1.1 × 10,18 m2). The residual differential pressures after re-imbibition of the water phase, referred to as the ,minimum capillary displacement pressures' (Pd), ranged from 0.06 to 6.7 MPa. During the re-imbibition process the effective permeability to the gas phase decreases with decreasing differential pressure. The recorded permeability/pressure data were used to derive the pore size distribution (mostly between 8 and 60 nm) and the transport porosity of the conducting pore system (10 -5,10 -2%). Correlations could be established between (i) absolute permeability coefficients and the maximum effective permeability coefficients and (ii) effective or absolute permeability coefficients and capillary sealing efficiency. No correlation was found between the capillary displacement pressures determined from gas breakthrough experiments and those derived theoretically by mercury injection. [source]


Dynamic binding capacity of plasmid DNA in histidine,agarose chromatography

BIOMEDICAL CHROMATOGRAPHY, Issue 9 2007
F. Sousa
Abstract The use of histidine,agarose chromatography in the purification of supercoiled (sc) plasmid DNA (pDNA) from Escherichia coli lysates has been reported recently. In the current work we describe a set of breakthrough experiments which were designed to study the effect of parameters such as flow-rate, temperature, concentration and conformation on the dynamic binding capacity of pDNA to the histidine support. One of the most striking results shows that the dynamic binding capacity for sc pDNA decreases linearly from 250.8 to 192.0 µg sc pDNA/mL when the temperature is varied from 5 to 24°C. This behaviour was attributed to temperature-induced, pre-denaturation conformational changes which promote the removal of negative superhelical turns in sc pDNA molecules and decrease the interaction of DNA bases with the histidine ligands. The capacity for sc pDNA was highly improved when using feeds with higher pDNA concentrations, a phenomenon which was attributed to the fact that pDNA molecules in more concentrated solutions are significantly compressed. A maximum capacity of 530.0 µg pDNA/mL gel was obtained when using a 125 µg/mL pDNA feed at 1 mL/min and 5°C, a figure which is comparable to the plasmid capacity values published for other chromatographic supports. Finally, a more than 2-fold increase in capacity was obtained when changing from open circular to sc pDNA solutions. Overall, the results obtained provide valuable information for the future development and implementation of histidine chromatography in the process scale purification of pDNA. Copyright © 2007 John Wiley & Sons, Ltd. [source]


High Throughput Screening for the Design and Optimization of Chromatographic Processes: Assessment of Model Parameter Determination from High Throughput Compatible Data

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2008
A. Susanto
Abstract Chromatographic processes can be optimized in various ways, and the two most prominent approaches are based either on statistical data analysis or on experimentally validated simulation models. Both strategies rely heavily on experimental data, the generation of which usually imposes a significant bottleneck on rational process design. The latter approach is followed in this work, and the utilizability of high throughput compatible experiments for the determination of model parameters which are required for in silico process optimization, is assessed. The unknown parameter values are estimated from batch uptake experiments on a robotic platform and from dynamic breakthrough experiments with miniaturized chromatographic columns. The identified model is then validated with respect to process optimization by comparison of model predictions with experimental data from a preparative scale column. In this study, a strong cation exchanger Toyopearl SP-650M and lysozyme solved in phosphate buffer (pH 7), is used as the test system. The utilization of data from miniaturized and high throughput compatible experiments is shown to yield sufficiently accurate results, and minimizes efforts and costs for both parameter estimation and model validation. [source]


Axial Dispersion and Wall Effects in Narrow Fixed Bed Reactors: A Comparative Study Based on RTD and NMR Measurements

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 8 2004
D. Tang
Abstract Axial dispersion and wall effects in narrow fixed beds with aspect ratios < 10 were investigated, both by classical methods and by NMR imaging. The residence time distribution (RTD) in the center and at the wall was measured, system water/NaCl-solution as tracer, and subsequently compared with radial velocity profiles based on NMR imaging. The influence of the aspect ratio and Rep on dispersion and on the degree of non-uniformity of the velocity profile was studied. The NMR results are consistent with the RTD and also with literature data of numerical simulations. For low aspect ratios, dispersion/wall effects have a strong influence on the reactor behavior, above all, in cases where a low effluent concentration is essential, as proven by breakthrough experiments with the reaction of H2S with ZnO. [source]