Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Breakpoints

  • chromosomal breakpoint
  • genomic breakpoint
  • translocation breakpoint

  • Terms modified by Breakpoints

  • breakpoint region
  • breakpoint regions

  • Selected Abstracts

    Breakpoint of a balanced translocation (X:14) (q27.1;q32.3) in a girl with severe hemophilia B maps proximal to the factor IX gene

    J. Di Paola
    Summary., Hemophilia B is an X-linked bleeding disorder caused by the deficiency of coagulation factor (F)IX, with an estimated prevalence of 1 in 30 000 male births. It is almost exclusively seen in males with rare exceptions. We report a girl who was diagnosed with severe (<1%) FIX deficiency at 4 months of age. Cytogenetic studies in the patient showed a balanced translocation between one of the X-chromosomes and chromosome 14, with breakpoints at bands Xq27.1 and 14q32.3. Both parents were found to have normal chromosomes. Late replication studies by incorporation of 5-bromodeoxyuridine showed non-random inactivation of the normal X-chromosome, a phenomenon frequently seen in balanced X/autosome translocations. To map the breakpoint, fluorescent in-situ hybridization was performed. A PAC DNA probe, RP6-88D7 (which contains the FIX gene) hybridized only on the normal chromosome X as well as onto the derivative 14. Using a PAC DNA probe, RP11-963P9 that is located proximal to the FIX gene, we obtained signals on the normal and derivative X and also on the derivative 14. We conclude that the breakpoint is located within the DNA sequence of this clone mapping proximal to the FIX gene. Since the FIX gene seems to be intact in the derivative 14, the breakpoint may affect an upstream regulatory sequence that subjects the gene to position effect variegation (PEV). [source]

    Breakpoints in immunoregulation required for Th1 cells to induce diabetes

    Margaret Neighbors
    Abstract We describe a novel TCR-transgenic mouse line, TCR7, where MHC class,II-restricted, CD4+ T cells are specific for the subdominant H-2b epitope (HEL74,88) of hen egg lysozyme (HEL), and displayed an increased frequency in the thymus and in peripheral lymphoid compartments over that seen in non-transgenic littermate controls. CD4+ T cells responded vigorously to HEL or HEL74,88 epitope presented on APC and could develop into Th1 or Th2 cells under appropriate conditions. Adoptive transfer of TCR7 Ly5.1 T cells into Ly5.2 rat insulin promoter (RIP)-HEL transgenic recipient hosts did not lead to expansion of these cells or result in islet infiltration, although these TCR7 cells could expand upon transfer into mice expressing high levels of HEL in the serum. Islet cell infiltration only occurred when the TCR7 cells had been polarized to either a Th1 or Th2 phenotype prior to transfer, which led to insulitis. Progression from insulitis to autoimmune diabetes only occurred in these recipients when Th1 but not Th2 TCR7 cells were transferred and CTLA-4 signaling was simultaneously blocked. These findings show that regulatory pathways such as CTLA-4 can hold in check already differentiated autoreactive effector Th1 cells, to inhibit the transition from tolerance to autoimmune diabetes. See accompanying commentary at [source]

    Technical aspects and clinical applications of measuring BCR-ABL1 transcripts number in chronic myeloid leukemia,

    Letizia Foroni
    Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by a triphasic clinical course, the morphologic expansion of a terminally differentiated myeloid cell and the presence of the BCR-ABL1 fusion gene, the hallmark of CML. The fusion gene is usually, but not always, associated with a Philadelphia chromosome, the result of a reciprocal exchange of genetic material between chromosome 22 and chromosome 9, which leads to the production of the activated BCR-ABL1 gene and oncoprotein. The breakpoint in the BCR gene occurs commonly downstream of exons e13 or e14 (M-BCR) and less frequently downstream of exons e1 and e2 (m- BCR). Less than 1% of cases carry a breakpoint downstream of exon 6 or 8 ("variant fusion genes") or exon 19 (,- BCR). Breakpoints in the ABL1 gene cluster upstream of exon a2 (or of exon a3 in less than 5% of patients with CML). Conventional cytogenetic, fluorescence in situ hybridization, and molecular testing for the BCR-ABL1 fusion gene are key investigations for the diagnosis and monitoring of CML. Treatment using tyrosine kinase inhibitors has revolutionized the management of CML with hematologic and cytogenetic response within 12,18 months observed in >85% of patients. Nevertheless, between 15 and 20% of patients may evolve to blastic phase. Measurement of low level or "minimal" residual disease using molecular tests is becoming the gold-standard approach to measure response to therapy due to its higher sensitivity compared to other routine techniques. The technical aspects and clinical applications of molecular monitoring will be the main focus of this article. Am. J. Hematol., 2009. © 2009 Wiley-Liss, Inc. [source]

    Calibration of fusidic acid disk diffusion susceptibility testing of Staphylococcus aureus

    APMIS, Issue 10 2002
    Single strain regression analysis, SRA, was used to calibrate disk diffusion fusidic acid susceptibility testing of Staphylococcus aureus in two laboratories using different standard methods but the same interpretative MIC limits. SRA equation constants were calculated using five different fusidic acid disk contents (1.5, 5, 15, 50, 150 ,g). These disks were tested on five separate occasions against quality control strain S. aureus ATCC 29213. The National Committee for Clinical Laboratory Standards (NCCLS) method was employed in Tartu, Estonia (TE) and the Swedish Reference Group for Antibiotics (SRGA) method in Sweden at the Karolinska Hospital (KS). SRA constants obtained were used for calculating zone breakpoints corresponding to MIC breakpoints recommended by the SRGA (S ,0.5 mg/L, R ,1 mg/L). Zone diameter histograms from KS, performed with a 50 ,g disk, and from TE, using a 10 ,g disk, showed a clustering of wild type strains around 41 mm and 30 mm, respectively, reflecting differences in methodology. Zone breakpoints calculated from the equations were validated by comparison with the histograms. Breakpoints were also calculated for a suggested lower disk content in Sweden, 10 ,g, and validated in tests of clinical isolates and by histogram analysis. [source]

    Behavioral economic analysis of cue-elicited craving for alcohol

    ADDICTION, Issue 9 2010
    James MacKillop
    ABSTRACT Aims Craving as a motivational determinant of drug use remains controversial because of ambiguous empirical findings. A behavioral economic approach may clarify the nature of craving, theorizing that subjective craving functionally reflects an acute increase in a drug's value. The current study tested this hypothesis via a multidimensional assessment of alcohol demand over the course of an alcohol cue reactivity procedure. Design One-way within-subjects design. Setting Human laboratory environment. Participants Heavy drinkers (n = 92) underwent exposures to neutral (water) cues followed by personalized alcohol cues. Assessments Participants were assessed for craving, alcohol demand, affect, and salivation following each exposure. Findings Alcohol versus neutral cues significantly increased craving and multiple behavioral economic measures of the relative value of alcohol, including alcohol consumption under conditions of zero cost (intensity), maximum expenditure on alcohol (Omax), persistence in drinking to higher prices (breakpoint) and proportionate price insensitivity (normalized Pmax). Craving was significantly correlated with demand measures at levels ranging from 0.21,0.43. Conclusions These findings support the potential utility of a behavioral economic approach to understanding the role of environmental stimuli in alcohol-related decision making. Specifically, they suggest that the behavioral economic indices of demand may provide complementary motivational information that is related to though not entirely redundant with measures of subjective craving. [source]

    Balanced translocation in a patient with severe myoclonic epilepsy of infancy disrupts the sodium channel gene SCN1A

    EPILEPSIA, Issue 6 2008
    Rikke S. Mųller
    Summary In a patient with severe myoclonic epilepsy of infancy (SMEI), we identified a de novo balanced translocation, t(2;5)(q24.3,q34). The breakpoint on chromosome 2q24.3 truncated the SCN1A gene and the 5q34 breakpoint was within a highly conserved genomic region. Point mutations or microdeletions of SCN1A have previously been identified in SMEI patients, but this is the first report of a balanced translocation disrupting the SCN1A gene in an epilepsy patient. We therefore recommend that SMEI patients without SCN1A microdeletions or point mutations should be investigated for chromosomal rearrangements. [source]

    Mild Generalized Epilepsy and Developmental Disorder Associated with Large Inv Dup(15)

    EPILEPSIA, Issue 9 2002
    Rosanna Chifari
    Summary: ,Purpose: Several studies attempted to clarify the genotype,phenotype correlations in patients with inverted duplication of chromosome 15 [inv dup(15)], which is usually characterized by severe mental retardation and epilepsy in individuals with large duplications including the Prader,Willi/Angelman region. We report two patients with inv dup(15) who, in spite of a large duplication, had a mild phenotype including adult-onset epilepsy. This report may help to define the milder spectrum of the syndrome. Methods: A 25-year-old girl with mild mental retardation had a 6-year history of absence seizures, with occasional head drop. Interictal EEG revealed diffuse spike,wave complexes. Epilepsy was well controlled by a combination of lamotrigine (LTG) and valproate (VPA). The other patient, a 27-year-old man with mild mental retardation, had a 5-year history of rare generalized tonic,clonic seizure during sleep, and frequent episodes of unresponsiveness, which appeared to be atypical absence seizures on video-EEG recordings. A combination of VPA and LTG led to a remarkable improvement, although no complete control. Results: Molecular analysis revealed a large inv dup15 in both patients. Conclusions: The discrepancy between the mild phenotype and the severe chromosomal abnormality detected in these two patients further supports the notion that the site of breakpoint might be contributory to the inv dup(15) phenotype. Inv dup(15) should be considered in atypical cases of generalized epilepsy of adult onset without clear-cut etiology. [source]

    Molecular analyses of the candidate tumor suppressor gene, PLAGL1, in benign and malignant salivary gland tumors

    Fredrik Enlund
    Deletions affecting the long arm of chromosome 6 are a characteristic feature of all major subtypes of malignant salivary gland tumors. Moreover, a subgroup of adenoid cystic carcinomas have t(6;9)(q23-25;p21-24) translocations with breakpoints located within the commonly deleted region. Here we have examined the possible involvement of the candidate tumor suppressor gene, PLAGL1, in these deletions and translocations. Northern blot and fluorescence in situ hybridization (FISH) analyses of a series of 27 salivary gland tumors revealed no significant changes in the gene expression or rearrangements of PLAGL1. FISH analysis also demonstrated that the 6q translocation breakpoint in adenoid cystic carcinomas with t(6;9) is proximal to the PLAGL1 locus. Collectively, these results indicate that PLAGL1 is not likely to be the major target gene of the 6q rearrangements in salivary gland tumors. [source]

    Breath-holding and its breakpoint

    M. J. Parkes
    This article reviews the basic properties of breath-holding in humans and the possible causes of the breath at breakpoint. The simplest objective measure of breath-holding is its duration, but even this is highly variable. Breath-holding is a voluntary act, but normal subjects appear unable to breath-hold to unconsciousness. A powerful involuntary mechanism normally overrides voluntary breath-holding and causes the breath that defines the breakpoint. The occurrence of the breakpoint breath does not appear to be caused solely by a mechanism involving lung or chest shrinkage, partial pressures of blood gases or the carotid arterial chemoreceptors. This is despite the well-known properties of breath-hold duration being prolonged by large lung inflations, hyperoxia and hypocapnia and being shortened by the converse manoeuvres and by increased metabolic rate. Breath-holding has, however, two much less well-known but important properties. First, the central respiratory rhythm appears to continue throughout breath-holding. Humans cannot therefore stop their central respiratory rhythm voluntarily. Instead, they merely suppress expression of their central respiratory rhythm and voluntarily ,hold' the chest at a chosen volume, possibly assisted by some tonic diaphragm activity. Second, breath-hold duration is prolonged by bilateral paralysis of the phrenic or vagus nerves. Possibly the contribution to the breakpoint from stimulation of diaphragm muscle chemoreceptors is greater than has previously been considered. At present there is no simple explanation for the breakpoint that encompasses all these properties. [source]

    Structural insight of human DEAD-box protein rck/p54 into its substrate recognition with conformational changes

    GENES TO CELLS, Issue 4 2006
    Tsutomu Matsui
    Human rck/p54, a product of the gene cloned at the breakpoint of t(11; 14) (q23;q32) chromosomal translocation on 11q23 in B-cell lymphoma, is a member of the DEAD-box RNA helicase family. Here, the crystal structure of Nc-rck/p54, the N-terminal core domain of rck/p54, revealed that the P-loop in motif I formed a closed conformation, which was induced by Asn131, a residue unique to the RCK subfamily. It appears that ATP does not bind to the P-loop. The results of dynamic light scattering revealed to ATP-induced conformational change of rck/p54. It was demonstrated that free rck/p54 is a distended molecule in solution, and that the approach between N-terminal core and C-terminal domains for ATP binding would be essential when unwinding RNA. The results from helicase assay using electron micrograph, ATP hydrolytic and luciferase assay showed that c-myc IRES RNA, whose secondary structure regulates IRES-dependant translation, was unwound by rck/p54 and indicated that it is a good substrate for rck/p54. Over-expression of rck/p54 in HeLa cells caused growth inhibition and cell cycle arrest at G2/M with down-regulation of c-myc expression. These findings altogether suggest that rck/p54 may affect the IRES-dependent translation of c-myc even in the cells. [source]

    Identification of a potential "hotspot" DNA region in the RUNX1 gene targeted by mitoxantrone in therapy-related acute myeloid leukemia with t(16;21) translocation

    Tiziana Ottone
    The translocation t(16;21) involving RUNX1 (AML1) and resulting in the RUNX1-CBFA2T3 fusion is a rare but recurrent abnormality mostly found in therapy-related acute myeloid leukemia (t-AML) associated with agents targeting topoisomerase II (topo II). We characterized, at the genomic level, the t(16;21) translocation in a patient who developed t-AML after treatment of multiple sclerosis with mitoxantrone (MTZ). Long template nested PCR of genomic DNA followed by direct sequencing enabled the localization of RUNX1 and CBFA2T3 (ETO2) breakpoints in introns 5 and 3, respectively. Sequencing of the cDNA with specific primers showed the presence of the expected RUNX1-CBFA2T3 fusion transcript in leukemic cells. The RUNX1 intron 5 breakpoint was located at nucleotide position 24,785. This region contained an ATGCCCCAG nucleotide sequence showing ,90% homology to a "hotspot" DNA region ATGCCCTAG present in intron 6 of PML previously identified in therapy-related acute promyelocytic leukemia cases arising following treatment with MTZ. This study suggests a wider distribution in the human genome, and particularly at genes involved in chromosome translocations observed in t-AML, of DNA regions (hotspot) targeted by specific topo II drugs. © 2008 Wiley-Liss, Inc. [source]

    Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpoint

    Martin G. McCabe
    Isodicentric 17q is the most commonly reported chromosomal abnormality in medulloblastomas. Its frequency suggests that genes disrupted in medulloblastoma formation may play a role in tumorigenesis. We have previously identified two chromosome 17 breakpoint at a 1 Mb resolution. Our aims were to accurately map the position of these breakpoints and to identify mechanisms of gene disruption at this site. CGH with a custom tiling path genomic BAC array of chromosome 17 enriched with fosmids at the breakpoint regions was used to analyze a series of 45 medulloblastomas and three medulloblastoma-derived cell lines. In total, 17 of 45 medulloblastomas had an isodicentric 17q. Two breakpoint regions were identified and their positions were mapped. The array identified a more complex arrangement at the breakpoint than has been reported previously using lower resolution BAC arrays. The patterns observed indicated that dicentric chromosome formation occurs both via nonallelic homologous recombination between palindromically arranged low copy repeats (the previously accepted mechanism) and by recombination between nonidentical sequences. In addition, novel alternative structural alterations, a homozygous deletion and a duplication, were identified within the chromosome breakpoint region in two cases. At the resolution of the array, these structural alterations spanned the same genes as cases with dicentric 17q formation, implying that the disruption of genes at the chromosome breakpoint itself may be of greater biological significance than has previously been suspected. © 2008 Wiley-Liss, Inc. [source]

    Frequency and characterization of HMGA2 and HMGA1 rearrangements in mesenchymal tumors of the lower genital tract

    Fabiola Medeiros
    Mesenchymal tumors of the lower genital tract predominantly occur in women of reproductive age and are mainly represented by aggressive angiomyxoma (AAM) and angiomyofibroblastoma (AMF). Whether these tumors are different phenotypic expressions of the same biological entity is still debatable. Genetic rearrangements of HMGA2 have been reported in a few cases of AAM but its frequency and clinicobiological implications have not been studied systematically. We evaluated 90 cases of mesenchymal tumors of the lower genital tract that comprised 42 AAMs, 18 AMFs, 6 cellular angiofibromas, 5 fibroepithelial stromal polyps, 15 genital leiomyomas, 3 superficial angiomyxomas, and 1 spindle cell lipoma. Fluorescence in situ hybridization was used to identify rearrangements of HMGA2 and its homologue HMGA1. HMGA2 rearrangements were identified in 14 AAMs (33%) and in 1 vaginal leiomyoma. All other tumors were negative for HMGA2 rearrangements. HMGA1 rearrangement was not found in any of the cases. RT-PCR confirmed transcriptional upregulation of HMGA2 only in tumors with HMGA2 rearrangements. Standard cytogenetic analyses were performed in two AAMs and one AMF. One AAM had a t(1;12)(p32;q15); the other tumors had normal karyotypes. Mapping and sequence analysis of the breakpoint showed fusion to the 3, untranslated region of HMGA2 to genomic sequences derived from the contig NT 032977.8 on chromosome 1p32. Our findings support the hypothesis that AAM and AMF are distinct biological entities. The diagnostic usefulness of HMGA2 rearrangements to differentiate between AAM and other tumors of the lower genital tract may be limited due to the their low frequency. © 2007 Wiley-Liss, Inc. [source]

    High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9

    Anne R. M. von Bergh
    The t(7;12)(q36;p13) is a recurrent translocation involving the ETV6/TEL gene (12p13) and a heterogeneous breakpoint at 7q36. A fusion transcript between HLXB9 and ETV6 in AML with t(7;12) is occasionally found. To study the incidence of t(7;12) in infant and childhood acute leukemia, we screened 320 cases <36 months using FISH. Additionally, 28 pediatric cases >36 months with cytogenetic breakpoints at 12p and 7q were investigated. We studied the presence of an HXLB9-ETV6 fusion transcript and quantified the expression of various genes located in the 7q36 breakpoint region. In total, six AML patients carried the t(7;12) of which five were infants and one child of 18 months. Only one out of 99 infant ALL patients harbored the t(7;12). No t(7;12) was found in older children with AML or ALL. AML patients carrying a t(7;12) had a poor outcome with a 3-year EFS of 0%. A fusion of HLXB9 to ETV6 was found in four AML cases with t(7;12). The 7q36 genes NOM1, LMBR1, RNF32, and SHH were equally expressed among t(7;12)-positive AML versus t(7;12)-negative AML, t(7;12)-negative ALL, or normal bone marrow. However, the HLXB9 expression was highly increased in t(7;12)-positive cases, including those with an HLXB9-ETV6 fusion. We conclude that the t(7;12) is almost exclusively present in infant AML and covers 30% of infant AML, while it is extremely rare in infant ALL and older children. The t(7;12) is associated with a poor outcome and an ectopic expression of HLXB9 is commonly involved in this genetic subtype of leukemia. © 2006 Wiley-Liss, Inc. [source]

    Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene

    Laura J. C. M. van Zutven
    Chromosome rearrangements are found in many acute leukemias. As a result, genes at the breakpoints can be disrupted, forming fusion genes. One of the genes involved in several chromosome aberrations in hematological malignancies is NUP98 (11p15). As NUP98 is close to the 11p telomere, small translocations might easily be missed. Using a NUP98 -specific split-signal fluorescence in situ hybridization (FISH) probe combination, we analyzed 84 patients with acute myeloid leukemia (AML), acute lymphoblastic leukemia, or myelodysplastic syndrome with either normal karyotypes or 11p abnormalities to investigate whether there are unidentified 11p15 rearrangements. Neither NUP98 translocations nor deletions were identified in cases with normal karyotypes, indicating these aberrations may be very rare in this group. However, NUP98 deletions were observed in four cases with unbalanced 11p aberrations, indicating that the breakpoint is centromeric of NUP98. Rearrangements of NUP98 were identified in two patients, both showing 11p abnormalities in the diagnostic karyotype: a t(4;11)(q1?3;p15) with expression of the NUP98,RAP1GDS1 fusion product detected in a 60-year-old woman with AML-M0, and an add(11)(p15) with a der(21)t(11;21)(p15;p13) observed cytogenetically in a 1-year-old boy with AML-M7. JARID1A was identified as the fusion partner of NUP98 using 3, RACE, RT-PCR, and FISH. JARID1A, at 12p13, codes for retinoblastoma binding protein 2, a protein implicated in transcriptional regulation. This is the first report of JARID1A as a partner gene in leukemia. © 2006 Wiley-Liss, Inc. [source]

    Population-based study of cancer among carriers of a constitutional structural chromosomal rearrangement

    Iben Bache
    We measured the occurrence of cancer in an unselected cohort of carriers of constitutional structural rearrangements in virtually complete nationwide registries for cancer and constitutional cytogenetic abnormalities. We identified 4,816 carriers of a constitutional structural rearrangement in the Danish Cytogenetic Registry and searched for cancer diagnoses by linkage to the Danish Cancer Registry. There was no overall increased risk for cancer among carriers (standardized incidence ratio [SIR], 0.96; 95% confidence interval [CI], 0.84,1.10), and no significant difference from that expected was found in balanced and unbalanced rearrangements or in any subtypes of rearrangements. We found significantly lower risks for carriers with rearrangements involving chromosome 21 (SIR, 0.50; 95% CI, 0.22,0.99) and for paternally inherited rearrangements (SIR, 0.30; 95% CI, 0.06,0.88). Risk estimates for the observed type-specific cancers showed an increased risk for non-Hodgkin lymphoma (SIR, 2.11; 95% CI, 1.09,3.69). However, subgroup analyses were not guided by study hypotheses, and our statistical evaluation of the data should be looked upon as exploratory. In addition, we found 12 constitutional structural rearrangements with a breakpoint potentially associated with a cancer-related gene. Potential new loci associated with type-specific cancers were suggested by the findings of families with more than one affected carrier and by the involvement of the same cytogenetic bands in unrelated carriers. Molecular mapping of these breakpoints might provide new insight into cancer predisposition. © 2005 Wiley-Liss, Inc. [source]

    Characterization of 6q abnormalities in childhood acute myeloid leukemia and identification of a novel t(6;11)(q24.1;p15.5) resulting in a NUP98,C6orf80 fusion in a case of acute megakaryoblastic leukemia

    Sabrina Tosi
    Chromosome abnormalities of 6q are not frequently observed in myeloid disorders. In this article, we report the incidence of these chromosome changes in childhood myeloid leukemia as 2%,4% based on the cytogenetic database of a single institution. We applied fluorescence in situ hybridization (FISH) to characterize precisely the types of 6q abnormalities in seven patients (six with acute myeloid leukemia and one with myelodysplastic syndrome). They carried various translocations involving different breakpoints in 6q, as confirmed by FISH using a whole-chromosome-6 paint. Four cases were reported as t(6;11), although the breakpoints varied. Among these, we identified a novel translocation, t(6;11)(q24.1;p15.5), in a patient with acute megakaryoblastic leukemia. Molecular cytogenetic studies using the PAC clone RP5-1173K1 localized the genomic breakpoint on chromosome 11 to within the NUP98 gene. The breakpoint on chromosome 6 was narrowed down to a 500-kb region between BAC clones RP11-721P14 and RP11-39H10. Reverse-transcription PCR was performed using a forward primer specific for NUP98 and a reverse primer for the candidate gene in the 500-kb interval in 6q. This experiment resulted in the identification of a new fusion between NUP98 and C6orf80. Further studies will aim to fully characterize C6orf80 and will elucidate the role of this new NUP98 fusion in myeloid leukemia. © 2005 Wiley-Liss, Inc. [source]

    A BCR,JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia

    Frank Griesinger
    Chronic myeloid leukemia (CML) is characterized by the presence of a t(9;22)(q34;q11.2), which leads to the well-known BCR,ABL1 fusion protein. We describe a patient who was diagnosed clinically with a typical CML but on cytogenetic analysis was found to have a t(9;22)(p24;q11.2). Chromosomal fluorescence in situ hybridization showed that the BCR gene locus spanned the breakpoint at band 22q11.2 but that the ABL1 gene was not rearranged. By means of a candidate gene approach, the JAK2 gene, at 9p24, was identified as the fusion partner of BCR in this case. The BCR,JAK2 fusion protein contains the coiled-coil dimerization domain of BCR and the protein tyrosine kinase domain (JH1) of JAK2. The patient's disease did not respond to Imatinib, and this unresponsiveness was most likely a result of the BCR,JAK2 fusion protein. © 2005 Wiley-Liss, Inc. [source]

    A microarray model system identifies potential new target genes of the proto-oncogene HOX11

    Katrin Hoffmann
    HOX11 is a homeobox gene originally identified at a chromosomal breakpoint in T-cell acute lymphoblastic leukemia (T-ALL). It is one of the most frequently deregulated genes in T-ALL, although the precise role of HOX11 in leukemogenesis as well as in normal development remains obscure. To gain more insight into the functional role of HOX11, we utilized a microarray model system to characterize the gene expression network that it directs. Using one of our T-ALL cell lines that had been stably transfected to express HOX11 and high-density oligonucleotide HG-U95A arrays, we identified a large number of differentially expressed genes in response to the enforced expression of HOX11. We focused on examining genes found to be up-regulated according to the microarray analysis and selected three putative target genes, NFKB2, SMARCD3, and NR4A3, for further investigation. We could not only confirm the up-regulation of NR4A3 by an independent method in all clones expressing HOX11, but luciferase reporter assays demonstrated that the effect that HOX11 exerted on the proximal promoter of NR4A3 was dependent on the presence of an intact homeodomain, providing support for the idea that HOX11 manifests its regulatory function via its action as a transcription factor. © 2004 Wiley-Liss, Inc. [source]

    Level of MYC overexpression in pediatric Burkitt's lymphoma is strongly dependent on genomic breakpoint location within the MYC locus

    Monika Wilda
    Increased transcriptional activity of the MYC gene is a characteristic feature of Burkitt's lymphoma. Aberrant MYC expression is caused by (1) chromosomal translocation to one of the loci carrying an immunoglobulin gene, (2) mutation within the translocated allele, (3) loss of the block to transcription elongation, or (4) promoter shift. To investigate the influence of breakpoint locations within the MYC gene on MYC transcript levels, we determined both the precise genomic MYC/IGH breakpoints and the amount of MYC mRNA in 25 samples of pediatric Burkitt's lymphoma with translocation t(8;14)(q24;q32). Patients with breakpoints that were 5, from MYC exon 1 had significantly lower expression of MYC than did patients who had a breakpoint within exon 1 or intron 1 (P < 0.05 and 0.005, respectively). The highest mRNA level of MYC (1,006 copies per 100 copies ABL1) was detected in patients with loss of the first exon and transcription initiation from a cryptic P3 promoter within the first intron of the MYC gene. In contrast, there was no obvious correlation between breakpoint locations within the IgH locus and the amount of MYC mRNA. © 2004 Wiley-Liss, Inc. [source]

    Disruption of a novel gene, DIRC3, and expression of DIRC3-HSPBAP1 fusion transcripts in a case of familial renal cell cancer and t(2;3)(q35;q21)

    Daniėlle Bodmer
    Previously, we identified a family with renal cell cancer and a t(2;3)(q35;q21). Positional cloning of the chromosome 3 breakpoint led to the identification of a novel gene, DIRC2, that spans this breakpoint. Here we have characterized the chromosome 2 breakpoint in detail and found that another novel gene, designated DIRC3, spans this breakpoint. In addition, we found that the first two exons of DIRC3 can splice to the second exon of HSPBAP1, a JmjC-Hsp27 domain gene that maps proximal to the breakpoint on chromosome 3. This splice results in the formation of DIRC3-HSPBAP1 fusion transcripts. We propose that these fusion transcripts may affect normal HSPBAP1 function and concomitant chromatin remodeling and/or stress response signals within t(2;3)(q35;q21)-positive kidney cells. As a consequence, familial renal cell cancer may develop. © 2003 Wiley-Liss, Inc. [source]

    Non-muscle myosin heavy chain (MYH9): A new partner fused to ALK in anaplastic large cell lymphoma

    Laurence Lamant
    In anaplastic large cell lymphoma, the ALK gene at 2p23 is known to be fused to NPM, TPM3, TPM4, TFG, ATIC, CLTC, MSN, and ALO17. All of these translocations result in the expression of chimeric ALK transcripts that are translated into fusion proteins with tyrosine kinase activity and oncogenic properties. We report a case showing a restricted cytoplasmic staining pattern of ALK and a novel chromosomal abnormality, t(2;22)(p23;q11.2), demonstrated by fluorescence in situ hybridization analysis. The result of 5, RACE analysis showed that the ALK gene was fused in-frame to a portion of the non-muscle myosin heavy chain gene, MYH9. Nucleotide sequence of the MYH9-ALK chimeric cDNA revealed that the ALK breakpoint was different from all those previously reported. It is localized in the same exonic sequence as MSN-ALK, but 6 bp downstream, resulting in an in-frame fusion of the two partner proteins. In contrast to the previously reported ALK fusion proteins, MYH9-ALK may lack a functional oligomerization domain. However, biochemical analysis showed that the new fusion protein is tyrosine phosphorylated in vivo but seems to lack tyrosine kinase activity in vitro. If further investigations confirm this latter result, the in vivo tyrosine phosphorylation of MYH9-ALK protein could involve mechanisms different from those described in the other ALK hybrid proteins. © 2003 Wiley-Liss, Inc. [source]

    Genetics of dermatofibrosarcoma protuberans family of tumors: From ring chromosomes to tyrosine kinase inhibitor treatment

    Nicolas Sirvent
    Dermatofibrosarcoma protuberans (DP) is a rare, slow-growing, infiltrating dermal neoplasm of intermediate malignancy, made up of spindle-shaped tumor cells often positive for CD34. The preferred treatment is wide surgical excision with pathologically negative margins. At the cytogenetic level, DP cells are characterized by either supernumerary ring chromosomes, which have been shown by using fluorescence in situ hybridization techniques to be derived from chromosome 22 and to contain low-level amplified sequences from 17q22-qter and 22q10,q13.1, or t(17;22), that are most often unbalanced. Both the rings and linear der(22) contain a specific fusion of COL1A1 with PDGFB. Similar to other tumors, the COL1A1-PDGFB fusion is occasionally cryptic, associated with complex chromosomal rearrangements. Although rings have been mainly observed in adults, translocations have been reported in all pediatric cases. DP is therefore a unique example of a tumor in which (i) the same molecular event occurs either on rings or linear translocation derivatives, (ii) the chromosomal abnormalities display an age-related pattern, and (iii) the presence of the specific fusion gene is associated with the gain of chromosomal segments, probably taking advantage of gene dosage effects. In all DP cases that underwent molecular investigations, the breakpoint localization in PDGFB was found to be remarkably constant, placing exon 2 under the control of the COL1A1 promoter. In contrast, the COL1A1 breakpoint was found to be variably located within the exons of the ,-helical coding region (exons 6,49). No preferential COL1A1 breakpoint and no correlation between the breakpoint location and the age of the patient or any clinical or histological particularity have been described. The COL1A1-PDGFB fusion is detectable by multiplex RT-PCR with a combination of forward primers designed from a variety of COL1A1 exons and one reverse primer from PDGFB exon 2. Recent studies have determined the molecular identity of "classical" DP, giant cell fibroblastoma, Bednar tumor, adult superficial fibrosarcoma, and the granular cell variant of DP. In approximately 8% of DP cases, the COL1A1-PDGFB fusion is not found, suggesting that genes other than COL1A1 or PDGFB might be involved in a subset of cases. It has been proposed that PDGFB acts as a mitogen in DP cells by autocrine stimulation of the PDGF receptor. It is encouraging that inhibitory effects of the PDGF receptor tyrosine kinase antagonist imatinib mesylate have been demonstrated in vivo; such targeted therapies might be warranted in the near future for treatment of the few DP cases not manageable by surgery. © 2003 Wiley-Liss, Inc. [source]

    Human homeobox gene HOXC13 is the partner of NUP98 in adult acute myeloid leukemia with t(11;12)(p15;q13)

    Roberta La Starza
    The chimeric gene NUP98/HOXC13 was detected in a patient with a de novo acute myeloid leukemia and a t(11;12)(p15;q13). Fluorescence in situ hybridization with PAC1173K1 identified the breakpoint on 11p15, indicating that the NUP98 gene was involved in the translocation. At 12q13, the breakpoint fell within BAC 578A18, selected for the homeobox C (HOXC) cluster genes. RACE-PCR showed that HOXC13 was the partner gene of NUP98. To date, HOXC13 is the eighth homeobox gene that, as the result of a reciprocal translocation, fuses with NUP98 in myeloid malignancies. © 2003 Wiley-Liss, Inc. [source]

    A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome

    Marķa D. Odero
    ETV6/TEL is the first transcription factor identified that is specifically required for hematopoiesis within the bone marrow. This gene has been found to have multiple fusion partners of which 16 have been cloned. Fluorescence in situ hybridization (FISH) analysis in a patient with myelodysplastic syndrome (MDS) revealed a t(1;12)(p36;p13) involving ETV6, with the breakpoint in this gene between exon 2 and exon 3. We report here the cloning of a novel ETV6 partner located on 1p36.1, involved in the t(1;12). 3, RACE-PCR from RNA identified a novel sequence fused to exon 2 of ETV6. Database searches localized this sequence in a bacterial artificial chromosome (BAC) mapped to 1p36 by fingerprint analysis. This result was confirmed by FISH using this BAC as probe. 5, and 3, RACE experiments with primers from this novel sequence were carried out on RNA from a healthy donor and identified a novel full-length mRNA, which we named MDS2 (myelodysplastic syndrome 2). RT-PCR experiments were performed on a panel of human cDNAs to analyze the expression pattern of this gene and they revealed four splicing variants. RT-PCR analysis showed that ETV6-MDS2, but not the reciprocal MDS2-ETV6 fusion transcript, was expressed in the bone marrow of the patient. The product of the ETV6-MDS2 fusion transcript predicts a short ETV6 protein containing the first 54 amino acids of ETV6 plus four novel amino acids, lacking both the PTN and the DNA-binding domains. Possible mechanisms to account for the development of MDS in this patient are discussed. © 2002 Wiley-Liss, Inc. [source]

    Expression of NUP98/TOP1, but not of TOP1/NUP98, in a treatment-related myelodysplastic syndrome with t(10;20;11)(q24;q11;p15)

    Ioannis Panagopoulos
    The t(11;20)(p15;q11) is a rare but recurrent translocation that so far has been described in only four acute myeloid leukemias (AMLs), two treatment-related myelodysplastic syndromes (t-MDSs), and one case of polycythemia vera. Recently, the t(11;20) was shown to result in a fusion of the NUP98 and TOP1 genes, with expression of the NUP98/TOP1 chimera encoded by the der(11)t(11;20), but not of the reciprocal TOP1/NUP98 on the der(20)t(11;20). The genomic breakpoints were subsequently mapped to introns 13 and 7 of NUP98 and TOP1, respectively. We present here a t-MDS with a three-way variant translocation, t(10;20;11)(q24;q11;p15), that generates a der(11)t(11;20) but not a der(20)t(11;20), strongly suggesting that the der(11) harbors the critical genetic rearrangement. Reverse transcriptase,polymerase chain reaction (RT-PCR) revealed a NUP98/TOP1 fusion in which exon 13 of NUP98 was fused in-frame with exon 8 of TOP1. Extra long (XL) genomic PCR and subsequent sequence analyses showed that the breakpoint in NUP98 occurred at nucleotide (nt) 3461 of intron 13, close to a MER (medium reiteration frequency interspersed repetitive element) repeat, and that the breakpoint in TOP1 was at nt 1436 of intron 7, downstream of a MIR (mammalian-wide interspersed repeats) repetitive element. Genomic XL PCR did not amplify the reciprocal TOP1/NUP98, nor was this chimera expressed, as expected from the cytogenetic finding. The present results provide further support for the involvement of the NUP98/TOP1 transcript, but not of the reciprocal one, in the development of MDS/AML. Furthermore, the three cases genomically characterized to date have all been treatment-related and have all harbored breakpoints in intron 13 of NUP98 and intron 7 of TOP1, suggesting that these introns are susceptible to chemotherapy-induced breakage. © 2002 Wiley-Liss, Inc. [source]

    Molecular cytogenetic characterization of early and late renal cell carcinomas in Von Hippel-Lindau disease ,

    John L. Phillips
    Deletions of 3p25, gains of chromosomes 7 and 10, and isochromosome 17q are known cytogenetic aberrations in sporadic renal cell carcinoma (RCC). In addition, a majority of RCCs have loss of heterozygosity (LOH) of the Von Hippel-Lindau (VHL) gene located at chromosome band 3p25. Patients who inherit a germline mutation of the VHL gene can develop multifocal RCCs and other solid tumors, including malignancies of the pancreas, adrenal medulla, and brain. VHL tumors follow the two-hit model of tumorigenesis, as LOH of VHL, a classic tumor suppressor gene, is the critical event in the development of the neoplastic phenotype. In an attempt to define the cytogenetic aberrations from early tumors to late RCC further, we applied spectral karyotyping (SKY) to 23 renal tumors harvested from 6 unrelated VHL patients undergoing surgery. Cysts and low-grade solid lesions were near-diploid and contained 1,2 reciprocal translocations, dicentric chromosomes, and/or isochromosomes. A variety of sole numerical aberrations included gains of chromosomes 1, 2, 4, 7, 10, 13, 21, and the X chromosome, although no tumors had sole numerical losses. Three patients shared a breakpoint at 2p21,22, and three others shared a dicentric chromosome 9 or an isochromosome 9q. In contrast to the near-diploidy of the low-grade lesions, a high-grade lesion and its nodal metastasis were markedly aneuploid, revealed loss of VHL by fluorescence in situ hybridization (FISH), and contained recurrent unbalanced translocations and losses of chromosome arms 2q, 3p, 4q, 9p, 14q, and 19p as demonstrated by comparative genomic hybridization (CGH). By combining SKY, CGH, and FISH of multiple tumors from the same VHL kidney, we have begun to identify chromosomal aberrations in the earliest stages of VHL-related renal cell tumors. Our current findings illustrate the cytogenetic heterogeneity of different VHL lesions from the same kidney, which supports the multiclonal origins of hereditary RCCs. Published 2001 Wiley-Liss, Inc. [source]

    Desmoplastic fibroblastoma (collagenous fibroma) with a specific breakpoint of 11q12

    HISTOPATHOLOGY, Issue 6 2007
    A Sakamoto
    No abstract is available for this article. [source]

    Aldehyde oxidase is coamplified with the World's most common Culex mosquito insecticide resistance-associated esterases

    J. Hemingway
    Abstract The evolution and spread of insecticide resistance is an important factor in human disease prevention and crop protection. The mosquito Culex quinquefasciatus is the main vector of the disease filariasis and a member of a species complex which is a common biting nuisance worldwide. The common insecticide resistance mechanism in this species involves germline amplification of the esterases est,21 and est,21. This amplification has arisen once and rapidly spread worldwide. Less common and more variable resistance phenotypes involve coamplification of est,3 and est,1, or individual amplification of a single est,1, different alleles of the same est, and est, gene loci. Est,21 and est,21 are on the same large fragment of amplified DNA (amplicon) 2.7 kb apart. We have now shown that this amplicon contains another full-length gene immediately 5, of est,21 which codes for a molybdenum-containing hydroxylase, with highest homology to aldehyde oxidase (AO) from other organisms. The full-length putative AO gene is not present on the est,3/est,1 or est,1 amplicons, but multiple truncated 5, ends of this gene are present around the presumed est,3/est,1 amplicon breakpoint. Polymerase chain reaction (PCR) analysis of insecticide-susceptible genomic DNA demonstrated that a different allele of the putative AO gene in its non-amplified form is immediately 5, of est,. The ,AO' gene on the est,21/est,21 amplicon is expressed and resistant insects have greater AO activity. This AO activity is sensitive to inhibition by an aldehyde-containing herbicide and pesticide. This enzyme may confer a selective advantage to these insects in the presence of insecticide, as AO in mammals is believed to be important in the detoxification process of several environmental pollutants. [source]

    Identification of 2 putative critical segments of 17q gain in neuroblastoma through integrative genomics

    Jo Vandesompele
    Abstract Partial gain of chromosome arm 17q is the most frequent genetic change in neuroblastoma (NB) and constitutes the strongest independent genetic factor for adverse prognosis. It is assumed that 1 or more genes on 17q contribute to NB pathogenesis by a gene dosage effect. In the present study, we applied chromosome 17 tiling path BAC arrays on a panel of 69 primary tumors and 28 NB cell lines in order to reduce the current smallest region of gain and facilitate identification of candidate dosage sensitive genes. In all tumors and cell lines with 17q gain, large distal segments were consistently present in extra copies and no interstitial gains were observed. In addition to these large regions of distal gain with breakpoints proximal to coordinate 44.3 Mb (17q21.32), smaller regions of gain (distal to coordinate 60 Mb at 17q24.1) were found superimposed on the larger region in a minority of cases. Positional gene enrichment analysis for 17q genes overexpressed in NB showed that dosage sensitive NB oncogenes are most likely located in the gained region immediately distal to the most distal breakpoint of the 2 breakpoint regions. Interestingly, comparison of gene expression profiles between primary tumors and normal fetal adrenal neuroblasts revealed 2 gene clusters on chromosome 17q that are overexpressed in NB, i.e. a region on 17q21.32 immediately distal to the most distal breakpoint (in cases with single regions of gain) and 17q24.1, a region coinciding with breakpoints leading to superimposed gain. © 2007 Wiley-Liss, Inc. [source]