| |||
Abundance Structures (abundance + structure)
Selected AbstractsThe geographical range structure of the holly leaf-miner.JOURNAL OF ANIMAL ECOLOGY, Issue 1 2002Summary 1The local population density structure of a phytophagous insect, the holly leaf-miner Phytomyza ilicis Curtis, was examined across its natural geographical range in Europe. 2The frequency distribution of the number of sample sites at which the leaf-miner attained different densities per tree was strongly right-skewed, with the species being absent from a large number of sites at which its host occurred, particularly in southern regions. 3There was a decline in the spatial autocorrelation of leaf-miner densities with increasing distance between sample sites, with negative autocorrelation at long lags resulting in part from high densities being attained at the north-eastern range limits and low densities at the southern range limits. 4Partial regression analysis was used to model leaf-miner densities in terms of spatial position within the geographical range and the broad climate experienced at the sample localities. This accounted for between 40 and 65% of the variation in densities, dependent upon how the leaf-miner's geographical range was defined. 5While overall these results are at odds with common and intuitively appealing assertions about the abundance structure of geographical ranges, they can readily be interpreted in terms of a simple modification of a general model of such structures. [source] The role of genotypic diversity in determining grassland community structure under constant environmental conditionsJOURNAL OF ECOLOGY, Issue 5 2007RAJ WHITLOCK Summary 1A recent experiment varied the genetic diversity of model grassland communities under standardized soil and management conditions and at constant initial species diversity. After 5 years' growth, genetically diverse communities retained more species diversity and became more similar in species composition than genetically impoverished communities. 2Here we present the results of further investigation within this experimental system. We proposed that two mechanisms , the first invoking genetically determined and constant differences in plant phenotypes and the second invoking genotype,environment interactions , could each underpin these results. This mechanistic framework was used as a tool to interpret our findings. 3We used inter-simple sequence repeat (ISSR) DNA markers to confirm which of the individuals of six study species initially included in the model communities were unique genotypes. We then used the molecular markers to assess the survival and abundance of each genotype at the end of the 5-year experimental period. 4The DNA marker data were used to create, for the first time, a genotype abundance hierarchy describing the structure of a community at the level of genotypes. This abundance hierarchy revealed wide variation in the abundance of genotypes within species, and large overlaps in the performance of the genotypes of different species. 5Each genotype achieved a consistent level of abundance within genetically diverse communities, which differed from that attained by other genotypes of the same species. The abundance hierarchy of genotypes within species also showed consistency across communities differing in their initial level of genetic diversity, such that species abundance in genetically impoverished communities could be predicted, in part, by genotypic identity. 6Three species (including two canopy-dominants) experienced shifts in their community-level genotype abundance hierarchies that were consistent with an increased influence of genotype,environment interactions in genetically impoverished communities. 7Our results indicate that under relatively constant environmental conditions the species abundance structure of plant communities can in part be predicted from the genotypic composition of their component populations. Genotype,environment interactions also appear to shape the structure of communities under such conditions, although further experiments are needed to clarify the magnitude and mechanism of these effects. [source] Spatial abundance structures in an assemblage of gall-forming sawfliesJOURNAL OF ANIMAL ECOLOGY, Issue 3 2004M. A. McGeoch Summary 1Examination of the fine-scale internal structure of species geographical ranges, and interspecific variation therein across landscapes, contributes to a more comprehensive understanding of the structure of geographical ranges. Two components of this internal structure that require further examination are the occurrence, extent and position of spatial autocorrelation, and relationships between the spatial abundance structures of closely related, ecologically similar species. 2Here we compare the abundance structures of an assemblage of gall-forming sawflies (Tenthredinidae) across a landscape. We identify the relative roles of spatial and non-spatial factors in explaining their abundance structures and test the hypothesis that sawfly density is explained by host plant quality, as has been demonstrated repeatedly at finer scales. We use these results to distinguish between alternative sets of mechanisms that may be operating at the landscape scale. 3Species densities were mainly multimodal across the landscape and significantly spatially structured, with patch, periodic and trend components. The abundance structures thus mimic those found generally for species across the full extent of their geographical ranges. 4Many abundance structure characteristics were unique to species, with differences in their correlogram profiles, distances over which densities were positively autocorrelated, and the absence of significant spatial structure in one species. 5In contrast to previous, fine-scale studies, host plant quality explained little of the variation in sawfly gall density across the landscape, whereas unexplained spatial structure contributed between 30% and 50%. Based on knowledge of the biology of these species and the absence of competitive interactions, species dispersal characteristics and the Moran effect are suggested as probable alternative hypotheses at this scale. 6Therefore, a spatial approach has identified the hierarchical nature of mechanisms underlying the population dynamics of this sawfly assemblage for the first time. Furthermore, it has highlighted the importance of spatial processes in explaining the densities of species at the landscape scale, as well as the individualistic nature of their abundance structures. [source] |