Abrasion Resistance (abrasion + resistance)

Distribution by Scientific Domains


Selected Abstracts


Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition

JOURNAL OF ORAL REHABILITATION, Issue 2 2005
T. SAWASE
summary, To improve the physical properties of the pure titanium surface, thin titanium nitride (TiN) films were deposited by means of ion-beam-assisted deposition. Film structure was confirmed as TiN by X-ray diffraction analysis. Surface hardness and abrasion resistance were significantly improved on TiN-coated specimens. Five combinations of oral hygiene instruments and materials were applied to the specimens as simulations of the oral environment. Treatment with the metal scaler and ultrasonic scaler severely changed the surface features and significantly increased the surface roughness parameters on pure titanium controls, whereas only small scratches and dull undulations were seen on the TiN-coated specimens. Profilometric tracings and scanning electron micrographs demonstrated the improved abrasion resistance of the TiN-coated specimens. [source]


Acrylonitrile,butadiene rubber/reclaimed rubber,nylon fiber composite

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2001
T. D. Sreeja
The effect of diphenylmethane diisocyanate (MDI),polyethyleneglycol (PEG) resin on the cure characteristics and mechanical properties of nitrile rubber/whole tyre reclaim,short nylon fiber composite,was studied. At a constant loading of 5 phr, the resin composition was varied. The minimum torque and (maximum , minimum) torque increased with isocyanate concentration. Scorch time and cure time showed a reduction on introduction of bonding agent. Properties like tensile strength, tear strength, and abrasion resistance increased with increase in MDI/PEG ratio, and these properties are higher in the longitudinal direction of fiber orientation. Compression set increased with isocyanate concentration and the resilience remain unchanged. © 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 281,288, 2001 [source]


Utilization of bowstring hemp fiber as a filler in natural rubber compounds

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
E. Osabohien
Abstract The cure characteristics and physicomechanical properties of natural rubber (standard Nigerian rubber) vulcanizates filled with the fiber of bowstring hemp (Sansevieria liberica) and carbon black were investigated. The results showed that the scorch and cure times decreased, whereas the maximum torques increased, with increasing filler loadings for both bowstring hemp fiber and carbon black filled vulcanizates. The tensile strength of both bowstring hemp fiber and carbon black filled vulcanizates increased to a maximum at a 40 phr filler concentration before decreasing. The elongation at break and rebound resilience decreased, whereas the modulus, specific gravity, abrasion resistance, and hardness increased, with increasing filler contents. The carbon black/natural rubber vulcanizates had higher tensile strength, which was about 1.5 times that of bowstring hemp fiber/natural rubber vulcanizates. This superiority in the tensile strength was probably due to the higher moisture content and larger particle size of the bowstring hemp fiber. However, the bowstring hemp fiber/natural rubber vulcanizates showed superior hardness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition

JOURNAL OF ORAL REHABILITATION, Issue 2 2005
T. SAWASE
summary, To improve the physical properties of the pure titanium surface, thin titanium nitride (TiN) films were deposited by means of ion-beam-assisted deposition. Film structure was confirmed as TiN by X-ray diffraction analysis. Surface hardness and abrasion resistance were significantly improved on TiN-coated specimens. Five combinations of oral hygiene instruments and materials were applied to the specimens as simulations of the oral environment. Treatment with the metal scaler and ultrasonic scaler severely changed the surface features and significantly increased the surface roughness parameters on pure titanium controls, whereas only small scratches and dull undulations were seen on the TiN-coated specimens. Profilometric tracings and scanning electron micrographs demonstrated the improved abrasion resistance of the TiN-coated specimens. [source]


Short fibers as reinforcement of rubber compounds

POLYMER COMPOSITES, Issue 4 2002
M. A. López Manchado
The effect of aramid, glass and cellulose short fibers on the processing behavior, crosslinking density and mechanical properties of natural rubber (NR), ethylene-propylene-diene terpolymer rubber (EPDM) and styrene-butadiene rubber (SBR) has been investigated. Two fiber percentages (10 and 20 phr) were added to the rubber. The results have shown that the above-mentioned fibers, especially aramid fibers, are effective reinforcing agents for these rubbers, giving rise to a significant increase in mechanical properties, such as tensile modulus and strength, and tear and abrasion resistance. Moreover, a significant decrease in the time to reach 97% of curing, t,c (97) is observed, which indicates that the fibers tend to increase the vulcanization rate, regardless of the rubber used. Fibers give also rise to an increase in crosslinking, especially the aramid fibers. [source]


Structure and properties of star-shaped solution-polymerized styrene-butadiene rubber and its co-coagulated rubber filled with silica/carbon black-I: morphological structure and mechanical properties

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11 2009
Xiao Liu
Abstract The morphological structure and mechanical properties of the star-shaped solution-polymerized styrene-butadiene rubber (SSBR) and organically modified nanosilica powder/star-shaped SSBR co-coagulated rubber (N-SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N-SSBR much more rapidly, and N-SSBR/SiO2 nanocomposite had better filler-dispersion and processability. N-SSBR/SiO2/CB vulcanizates displayed higher glass-transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N-SSBR/SiO2/CB vulcanizates, filler was dispersed in nano-scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler-dispersion and stronger interfacial interaction with macromolecular chains. N-SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd. [source]