Above-ground Net Primary Production (above-ground + net_primary_production)

Distribution by Scientific Domains


Selected Abstracts


Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes

GLOBAL ECOLOGY, Issue 5 2004
José M. Paruelo
ABSTRACT Aims, 1. To characterize ecosystem functioning by focusing on above-ground net primary production (ANPP), and 2. to relate the spatial heterogeneity of both functional and structural attributes of vegetation to environmental factors and landscape structure. We discuss the relationship between vegetation structure and functioning found in Patagonia in terms of the capabilities of remote sensing techniques to monitor and assess desertification. Location, Western portion of the Patagonian steppes in Argentina (39°30, S to 45°27, S). Methods, We used remotely-sensed data from Landsat TM and AVHRR/NOAA sensors to characterize vegetation structure (physiognomic units) and ecosystem functioning (ANPP and its seasonal and interannual variation). We combined the satellite information with floristic relevés and field estimates of ANPP. We built an empirical relationship between the Landsat TM-derived normalized difference vegetation index (NDVI) and field ANPP. Using stepwise regressions we explored the relationship between ANPP and both environmental variables (precipitation and temperature surrogates) and structural attributes of the landscape (proportion and diversity of different physiognomic classes (PCs)). Results, PCs were quite heterogeneous in floristic terms, probably reflecting degradation processes. Regional estimates of ANPP showed differences of one order of magnitude among physiognomic classes. Fifty percent of the spatial variance in ANPP was accounted for by longitude, reflecting the dependency of ANPP on precipitation. The proportion of prairies and semideserts, latitude and, to a lesser extent, the number of PCs within an 8 × 8 km cell accounted for an additional 33% of the ANPP variability. ANPP spatial heterogeneity (calculated from Landsat TM data) within an 8 × 8 km cell was positively associated with the mean AVHRR/NOAA NDVI and with the diversity of physiognomic classes. Main conclusions, Our results suggest that the spatial and temporal patterns of ecosystem functioning described from ANPP result not only from water availability and thermal conditions but also from landscape structure (proportion and diversity of different PCs). The structural classification performed using remotely-sensed data captured the spatial variability in physiognomy. Such capability will allow the use of spectral classifications to monitor desertification. [source]


Responses of a California annual grassland to litter manipulation

JOURNAL OF VEGETATION SCIENCE, Issue 5 2008
Kathryn L. Amatangelo
Abstract Question: What are the physical and chemical effects of plant litter on annual grassland community composition, above-ground net primary production (ANPP), and density? Location: California annual grassland. Methods: We manipulated litter and light levels independently and in concert. Litter removal and litter addition treatments tested both the physical and chemical impacts of litter's presence. We additionally simulated the effect of litter physical shading by using shade cloth, and added powdered litter to test for the chemical impacts of decomposing litter. Results: Increased whole litter and shading decreased grass germination and establishment, but not that of forbs or legumes. Species shifts occurred within all groups across treatments, including a transition from small-seeded to large-seeded grass and legume species with increased shading. ANPP was highest in control plots (473 ± 59 g/m2), and species richness was highest in litter removal plots. While the physical effects of litter via shading were significant, the chemical effects of adding powdered litter were negligible. Conclusions: This work suggests that over one growing season, the physical impacts of litter are more important than chemical impacts in shaping community structure and ANPP in annual grasslands. Changes in light availability with altered litter inputs drive shifts in species and functional group composition. Litter feedbacks to ANPP and species composition of local patches may help maintain diversity and stabilize ANPP in this grassland. [source]


Inter-annual variation in primary production of a semi-arid grassland related to previous-year production

JOURNAL OF VEGETATION SCIENCE, Issue 1 2001
Martín Oesterheld
Mean annual precipitation accounts for a large proportion of the variation in mean above-ground net primary production (ANPP) of grasslands worldwide. However, the inter-annual variation in production in any grassland site is only loosely correlated with precipitation. The longest record of variation in production and precipitation for a site corresponds to a shortgrass steppe in Colorado, USA. A previous study of this record showed that current-year precipitation accounted for 39% of the inter-annual variation in ANPP. In this note, we show that ca. one third of the unexplained variation is related to previous-year ANPP: ANPP per mm of precipitation was higher in years preceded by wet, more productive years than in years preceded by average years; similarly, ANPP per mm of precipitation was lower in years preceded by dry, less productive years than in years preceded by average years. Since previous-year ANPP was, in turn, associated with precipitation of a year before, current-year ANPP was also explained by precipitation of two previous years. Our finding not only increases our predictive ability, but it also changes our understanding of how ANPP responds to fluctuations in precipitation. If ANPP is thought to vary according to current-year precipitation only, it will simply track annual precipitation in time. According to this new result, however, ANPP fluctuations are buffered if wet, more productive years alternate with dry, less productive years, and they are amplified if wet or dry sequences of several years take place. [source]


Spatial variability of above-ground net primary production in Uruguayan grasslands: a remote sensing approach

APPLIED VEGETATION SCIENCE, Issue 1 2010
S. Baeza
Abstract Question: How does above-ground net primary production (ANPP) differ (estimated from remotely sensed data) among vegetation units in sub-humid temperate grasslands? Location: Centre-north Uruguay. Methods: A vegetation map of the study area was generated from LANDSAT imagery and the landscape configuration described. The functional heterogeneity of mapping units was analysed in terms of the fraction of photosynthetically active radiation absorbed by green vegetation (fPAR), calculated from the normalized difference vegetation index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. Finally, the ANPP of each grassland class was estimated using NDVI and climatic data. Results: Supervised classification presented a good overall accuracy and moderate to good average accuracy for grassland classes. Meso-xerophytic grasslands occupied 45% of the area, Meso-hydrophytic grasslands 43% and Lithophytic steppes 6%. The landscape was shaped by a matrix of large, unfragmented patches of Meso-xerophytic and Meso-hydrophytic grasslands. The region presented the lowest anthropic fragmentation degree reported for the Rio de la Plata grasslands. All grassland units showed bimodal annual fPAR seasonality, with spring and autumn peaks. Meso-hydrophytic grasslands showed a radiation interception 10% higher than the other units. On an annual basis, Meso-hydrophytic grasslands produced 3800 kg dry matter (DM) ha,1 yr,1 and Meso-xerophytic grasslands and Lithophytic steppes around 3400 kg·DM·ha,1·yr,1. Meso-xerophytic grasslands had the largest spatial variation during most of the year. The ANPP temporal variation was higher than the fPAR variability. Conclusions: Our results provide valuable information for grazing management (identifying spatial and temporal variations of ANPP) and grassland conservation (identifying the spatial distribution of vegetation units). [source]