| |||
Abnormal Activation (abnormal + activation)
Selected AbstractsINSULIN-LIKE GROWTH FACTOR-I RECEPTOR AS A CANDIDATE FOR A NOVEL MOLECULAR TARGET IN GASTROINTESTINAL CANCERSDIGESTIVE ENDOSCOPY, Issue 4 2006Yasushi Adachi Abnormal activation of growth factor receptors and their signal pathways are required for neoplastic transformation and tumor progression. The concept of targeting specific tumorigenic receptors has been validated by successful clinical application of multiple new drugs, such as those acting against HER2/neu, epidermal growth factor receptor 1, and c-Kit. In this review, we focus on the next promising therapeutic molecular target of insulin-like growth factor (IGF)-I receptor (IGF-Ir). The IGF/IGF-Ir system is an important modifier of cancer cell proliferation, survival, growth, and treatment sensitivity in a number of neoplastic diseases, including human gastrointestinal carcinomas. Preclinical studies demonstrated that downregulation of IGF-Ir signals reversed the neoplastic phenotype and sensitized cells to antitumor treatments. We summarize a variety of ways to disrupt IGF-Ir function. Then, we introduce our strategy of adenoviruses expressing dominant negative of IGF-Ir (IGF-Ir/dn) against gastrointestinal cancers, including stomach, colon, and pancreas. IGF-Ir/dn suppresses tumorigenicity both in vitro and in vivo and increases stressor-induced apoptosis. IGF-Ir/dn expression upregulates chemotherapy-induced apoptosis and these combination therapies with chemotherapy are very effective against tumors in mice. Some drugs blocking IGF-Ir function are now entering clinical trial, thus IGF-Ir might be a candidate for a therapeutic target in several gastrointestinal malignancies. [source] The neuroanatomy and neuroendocrinology of fragile X syndromeDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2004David Hessl Abstract Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene,brain,behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical features that are unique to this syndrome. In this article, we summarize studies focused on the neuroanatomy and neuroendocrinology of FXS. A review of structural imaging studies of individuals with the full mutation shows that several brain regions are enlarged, including the hippocampus, amygdala, caudate nucleus, and thalamus, even after controlling for overall brain volume. These regions mediate several cognitive and behavioral functions known to be aberrant in FXS such as memory and learning, information and sensory processing, and social and emotional behavior. Two regions, the cerebellar vermis, important for a variety of cognitive tasks and regulation of motor behavior, and the superior temporal gyrus, involved in processing complex auditory stimuli, are reported to be reduced in size relative to controls. Functional imaging, typically limited to females, has emphasized that individuals with FXS do not adequately recruit brain regions that are normally utilized by unaffected individuals to carry out various cognitive tasks, such as arithmetic processing or visual memory tasks. Finally, we review a number of neuroendocrine studies implicating hypothalamic dysfunction in FXS, including abnormal activation of the hypothalamic,pituitary,adrenal (HPA) axis. These studies may help to explain the abnormal stress responses, sleep abnormalities, and physical growth patterns commonly seen in affected individuals. In the future, innovative longitudinal studies to investigate development of neurobiologic and behavioral features over time, and ultimately empirical testing of pharmacological, behavioral, and even molecular genetic interventions using MRI are likely to yield significant positive changes in the lives of persons with FXS, as well as increase our understanding of the development of psychiatric and learning problems in the general population. MRDD Research Reviews 2004;10:17,24. © 2004 Wiley-Liss, Inc. [source] fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFN,-1a injectionHUMAN BRAIN MAPPING, Issue 5 2007Maria A. Rocca Abstract If fatigue in multiple sclerosis (MS) is related to an abnormal activation of the sensorimotor brain network, the activity of such a network should vary with varying fatigue. We studied 22 patients treated with interferon beta 1a (IFN,-1a; Avonex, Biogen, Cambridge, MA) with no fatigue (10) and with reversible fatigue (12). fMRI examinations were performed: 1) the same day of IFN,-1a injection (no fatigue; entry), 2) the day after IFN,-1a injection (fatigue; time 1), and 3) 4 days after IFN,-1a injection (no fatigue; time 2). Patients performed a simple motor task with the right, clinically unaffected hand. At time 1, compared with entry and time 2, MS patients with reversible fatigue showed an increased activation of the thalamus bilaterally. In MS patients without fatigue thalamus was more activated at entry than at time 1. In both groups at entry the primary SMC and the SMA were more activated than at times 1 and 2. At entry and time 1, when compared to patients with reversible fatigue, those without showed increased activations of the SII. Conversely, patients with reversible fatigue had increased activations of the thalamus and of several regions of the frontal lobes. An abnormal recruitment of the fronto-thalamic circuitry is associated with IFN,-1a-induced fatigue in MS patients. Hum Brain Mapp, 2007. © 2006 Wiley-Liss, Inc. [source] Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's diseaseJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005Akihito Ishigami Abstract Citrullinated proteins are the products of a posttranslational process in which arginine residues undergo modification into citrulline residues when catalyzed by peptidylarginine deiminases (PADs) in a calcium ion-dependent manner. In our previous report, PAD2 expressed mainly in the rat cerebrum became activated early in the neurodegenerative process. To elucidate the involvement of protein citrullination in human neuronal degeneration, we examined whether citrullinated proteins are produced during Alzheimer's disease (AD). By Western blot analysis with antimodified citrulline antibody, citrullinated proteins of varied molecular weights were detected in hippocampal tissues from patients with AD but not normal humans. Two of the citrullinated proteins were identified as vimentin and glial fibrillary acidic protein (GFAP) by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Interestingly, PAD2 was detected in hippocampal extracts from AD and normal brains, but the amount of PAD2 in the AD tissue was markedly greater. Histochemical analysis revealed citrullinated proteins throughout the hippocampus, especially in the dentate gyrus and stratum radiatum of CA1 and CA2 areas. However, no citrullinated proteins were detected in the normal hippocampus. PAD2 immunoreactivity was also ubiquitous throughout both the AD and the normal hippocampal areas. PAD2 enrichment coincided well with citrullinated protein positivity. Double immunofluorescence staining revealed that citrullinated protein- and PAD2-positive cells also coincided with GFAP-positive cells, but not all GFAP-positive cells were positive for PAD2. As with GFAP, which is an astrocyte-specific marker protein, PAD2 is distributed mainly in astrocytes. These collective results, the abnormal accumulation of citrullinated proteins and abnormal activation of PAD2 in hippocampi of patients with AD, strongly suggest that PAD has an important role in the onset and progression of AD and that citrullinated proteins may become a useful marker for human neurodegenerative diseases. © 2005 Wiley-Liss, Inc. [source] Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complexANNALS OF NEUROLOGY, Issue 4 2008Ling-Hui Zeng MD Objective Tuberous sclerosis complex (TSC) represents one of the most common genetic causes of epilepsy. TSC gene inactivation leads to hyperactivation of the mammalian target of rapamycin signaling pathway, raising the intriguing possibility that mammalian target of rapamycin inhibitors might be effective in preventing or treating epilepsy in patients with TSC. Mice with conditional inactivation of the Tsc1 gene primarily in glia (Tsc1GFAPCKO mice) develop glial proliferation, progressive epilepsy, and premature death. Here, we tested whether rapamycin could prevent or reverse epilepsy, as well as other cellular and molecular brain abnormalities in Tsc1GFAPCKO mice. Methods Tsc1GFAPCKO mice and littermate control animals were treated with rapamycin or vehicle starting at postnatal day 14 (early treatment) or 6 weeks of age (late treatment), corresponding to times before and after onset of neurological abnormalities in Tsc1GFAPCKO mice. Mice were monitored for seizures by serial video-electroencephalogram and for long-term survival. Brains were examined histologically for astrogliosis and neuronal organization. Expression of phospho-S6 and other molecular markers correlating with epileptogenesis was measured by Western blotting. Results Early treatment with rapamycin prevented the development of epilepsy and premature death observed in vehicle-treated Tsc1GFAPCKO mice. Late treatment with rapamycin suppressed seizures and prolonged survival in Tsc1GFAPCKO mice that had already developed epilepsy. Correspondingly, rapamycin inhibited the abnormal activation of the mammalian target of rapamycin pathway, astrogliosis, and neuronal disorganization, and increased brain size in Tsc1GFAPCKO mice. Interpretation Rapamycin has strong efficacy for preventing seizures and prolonging survival in Tsc1GFAPCKO mice. Ann Neurol 2008 [source] MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteinsARTHRITIS & RHEUMATISM, Issue 4 2009Yuanjia Tang Objective MicroRNA have recently been identified as regulators that modulate target gene expression and are involved in shaping the immune response. This study was undertaken to investigate the contribution of microRNA-146a (miR-146a), which was identified in the pilot expression profiling step, to the pathogenesis of systemic lupus erythematosus (SLE). Methods TaqMan microRNA assays of peripheral blood leukocytes were used for comparison of expression levels of microRNA between SLE patients and controls. Transfection and stimulation of cultured cells were conducted to determine the biologic function of miR-146a. Bioinformatics prediction and validation by reporter gene assay and Western blotting were performed to identify miR-146a targets. Results Profiling of 156 miRNA in SLE patients revealed the differential expression of multiple microRNA, including miR-146a, a negative regulator of innate immunity. Further analysis showed that underexpression of miR-146a negatively correlated with clinical disease activity and with interferon (IFN) scores in patients with SLE. Of note, overexpression of miR-146a reduced, while inhibition of endogenous miR-146a increased, the induction of type I IFNs in peripheral blood mononuclear cells (PBMCs). Furthermore, miR-146a directly repressed the transactivation downstream of type I IFN. At the molecular level, miR-146a could target IFN regulatory factor 5 and STAT-1. More importantly, introduction of miR-146a into the patients' PBMCs alleviated the coordinate activation of the type I IFN pathway. Conclusion The microRNA miR-146a is a negative regulator of the IFN pathway. Underexpression of miR-146a contributes to alterations in the type I IFN pathway in lupus patients by targeting the key signaling proteins. The findings provide potential novel strategies for therapeutic intervention. [source] |