ABCB1 Gene (abcb1 + gene)

Distribution by Scientific Domains


Selected Abstracts


Association of ABCB1 genetic variants 3435C>T and 2677G>T to ABCB1 mRNA and protein expression in brain tissue from refractory epilepsy patients

EPILEPSIA, Issue 9 2008
Igor Mosyagin
Summary Purpose: There is evidence from studies in rodents that P-glycoprotein (P-gp) overexpression is implicated in the causation of refractory epilepsy. Genetic variants in the human ABCB1 (MDR1) gene were shown to affect the expression levels of the transporter in various tissues and to be associated with refractory epilepsy. However, the effect of the genetic variants on the P-gp level in epileptogenic brain tissue is poorly investigated. In the present study, we examined the impact of putatively functional polymorphisms 3435C>T and 2677G>T in the ABCB1 gene on the ABCB1 mRNA expression and P-gp content in human brain tissue from epileptogenic foci of the patients with refractory epilepsy. Methods: Fresh brain tissue specimens were obtained from therapy-refractory epilepsy patients during neurosurgery of the epileptogenic focus. We determined the ABCB1 mRNA expression in 23 samples using 5, exonuclease-based real-time polymerase chain reaction (PCR) as well as the P-gp content in 32 samples determined by immunohistochemistry, genotyping was performed by PCR/restriction fragment length polymorphism (RFLP). Results: There was lack of association of 3435C>T and 2677G>T as well as diplotype configurations on ABCB1 mRNA expression and P-gp content in epileptogenic brain tissues. Conclusions: We cannot exclude an association of ABCB1 variants on P-gp function, but our results suggest that brain ABCB1 mRNA and protein expression is not substantially influenced by major ABCB1 genetic variants thus explaining in part results from case-control studies obtaining lack of association of ABCB1 polymorphisms to the risk of refractory epilepsy. [source]


The implications of P-glycoprotein in HIV: friend or foe?

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2005
Andrew Owen
Abstract P-glycoprotein (P-gp), coded by the ABCB1 gene, has a wide tissue distribution. The drug transporter is known to limit the bioavailability of a plethora of drugs and xenobiotics including the human immunodeficiency virus (HIV) protease inhibitors. There remains a considerable degree of debate in the literature with respect to the role of ABCB1 polymorphisms in HIV-treatment outcome and some studies have also implicated antiretroviral drugs as inducers of P-gp. Recent evidence indicates a role for P-gp in the inhibition of viral infectivity and/or release and cellular relationships with other infection-related proteins (and cholesterol). It is becoming increasingly clear that future studies on P-gp in HIV should consider both pharmacological and virological issues. [source]


Biliary excretion of technetium-99m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1, mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2009
J. C. COELHO
P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug,drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi (99mTc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h × 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of 99mTc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of 99mTc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of 99mTc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well. [source]


Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy,

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 1 2010
Matthijs L. Becker PharmD
Abstract Purpose Simvastatin and atorvastatin are metabolized by the CYP3A4 enzyme and transported by the ABCB1 transporter. We studied whether the polymorphism CYP3A4*1B and the polymorphisms C1236T, G2677A/T and C3435T in the ABCB1 gene were associated with a decrease of the prescribed dose or a switch to another cholesterol lowering drug during simvastatin and atorvastatin therapy. These events may indicate that statin plasma levels were too high and resulted in an adverse drug reaction or a too strong reduction in cholesterol level. Methods We identified 1239 incident simvastatin and atorvastatin users in the Rotterdam Study, a population-based cohort study. Associations between the polymorphisms in the CYP3A4 and ABCB1 gene and the time to a decrease in dose or a switch to another cholesterol lowering drug were studied using Cox proportional hazards. Results Simvastatin and atorvastatin users with the CYP3A4*1B variant G allele had a lower risk (HR 0.46; 95%CI 0.24,0.90) for these events than users with the wild-type AA genotype. No significant associations were found for the ABCB1 polymorphisms. The association with the CYP3A4*1B polymorphism was found in women (HR 0.33; 95%CI 0.12,0.89) and was non-significant in men (HR 0.69 95%CI 0.28,1.70). This association was stronger in patients with the ABCB1 3435T variant allele versus the G allele. Conclusion In simvastatin and atorvastatin users, the CYP3A4*1B G allele is associated with a lower risk of elevated statin plasma levels, particularly in women and in users with the ABCB1 3435T variant allele. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Gefitinib,phenytoin interaction is not correlated with the 14C-erythromycin breath test in healthy male volunteers

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2 2009
Stephanie Chhun
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , The response to gefitinib is variable and could be explained partly by the interindividual variability in gefitinib exposure. , Gefitinib is mainly metabolized by CYP3A4 and CYP2D6, and is to a lesser extent a P-glycoprotein (P-gp) substrate. , Patients with cancer are at high risk of drug,drug interactions, such as with phenytoin, a potent CYP3A4 inducer. WHAT THIS STUDY ADDS , The reduced systemic exposure of gefitinib with multiple-dose phenytoin treatment. , An effect attributed to the possible induction of intestinal CYP3A4 because of the lack of correlation between changes in gefitinib disposition and the erythromycin breath test and the lack of association between allelic variant in the ABCB1 gene and baseline and induced oral gefitinib clearance. , The CYP2D6 extensive metabolizer seems to be less sensitive to the interaction with phenytoin, as the magnitude of induction of gefitinib clearance was greater in CYP2D6 poor metabolizers than in CYP2D6 extensive metabolizers. AIMS We aimed to describe the pharmacokinetic interaction between phenytoin, a potent CYP3A4 and P-glycoprotein (P-gp) (ABCB1) inducer, and gefitinib, a CYP3A4, CYP2D6 and P-gp substrate. METHODS An open-label, randomized, two-phase crossover study was conducted. Eighteen healthy male volunteers (nine homozygous CC and nine homozygous TT as determined by their ABCB1 C3435T polymorphism in exon 26) received a single oral dose of 250 mg gefitinib alone or after 5 days treatment with phenytoin (5 mg kg,1 daily). Gefitinib plasma concentrations were determined by high-performance liquid chromatography. Hepatic CYP3A4 activity was evaluated by the 14C-erythromycin breath test (ERMBT) and the ABCB1 and CYP2D6 genetic polymorphisms were determined by the TaqMan allelic discrimination assay and long polymerase chain reaction, respectively. RESULTS Following treatment with phenytoin, mean gefitinib Cmax and AUC0,, decreased by 26 ± 44% [95% confidence interval (CI) for the difference 5,48%, P= 0.005] and 47 ± 26% (95% CI for the difference 34,60%, P= 0.001), respectively, and apparent oral clearance increased by 126 ± 93% (95% CI for the difference 80,172%, P= 0.004). Concomitantly, phenytoin increased the mean ERMBT by 91 ± 44% (95% CI 75,105%, P < 0.001) from baseline, but the extent of liver CYP3A4 induction was not correlated to the extent of interaction. Furthermore, this interaction was independent of ABCB1 genetic polymorphism. The CYP2D6 genotype was slightly but significantly related to gefitinib clearance (P= 0.04) during the control phase. CONCLUSIONS The significant interaction between gefitinib and phenytoin was not correlated with the erythromycin breath test and was independent of ABCB1 polymorphism, but may involve presystemic CYP3A-mediated intestinal first-pass. [source]


Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 1 2010
Hee-Doo Yoo
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , The interindividual variability of the pharmacokinetic parameters of cilostazol is relatively large. , Cilostazol undergoes extensive hepatic metabolism via the P450 enzymes, primarily CYP3A and, to a lesser extent, CYP2C19. , Indeed, <1% of the administered dose of cilostazol is excreted unchanged in the urine. WHAT THIS STUDY ADDS , A population pharmacokinetic analysis of cilostazol was conducted to evaluate the impact of CYP3A, CYP2C19 and ABCB1 polymorphisms on cilostazol disposition in vivo. , Genetic polymorphisms of CYP3A5 and CYP2C19 explain the substantial interindividual variability in the pharmacokinetics of cilostazol. , ABCB1 genotypes do not to appear to be associated with the disposition of cilostazol. AIMS To investigate the influence of genetic polymorphisms in the CYP3A5, CYP2C19 and ABCB1 genes on the population pharmacokinetics of cilostazol in healthy subjects. METHODS Subjects who participated in four separate cilostazol bioequivalence studies with the same protocols were included in this retrospective analysis. One hundred and four healthy Korean volunteers were orally administered a single 50- or 100-mg dose of cilostazol. We estimated the population pharmacokinetics of cilostazol using a nonlinear mixed effects modelling (nonmem) method and explored the possible influence of genetic polymorphisms in CYP3A (CYP3A5*3), CYP2C19 (CYP2C19*2 and CYP2C19*3) and ABCB1 (C1236T, G2677T/A and C3435T) on the population pharmacokinetics of cilostazol. RESULTS A two-compartment model with a first-order absorption and lag time described the cilostazol serum concentrations well. The apparent oral clearance (CL/F) was estimated to be 12.8 l h,1. The volumes of the central and the peripheral compartment were characterized as 20.5 l and 73.1 l, respectively. Intercompartmental clearance was estimated at 5.6 l h,1. Absorption rate constant was estimated at 0.24 h,1 and lag time was predicted at 0.57 h. The genetic polymorphisms of CYP3A5 had a significant (P < 0.001) influence on the CL/F of cilostazol. When CYP2C19 was evaluated, a significant difference (P < 0.01) was observed among the three genotypes (extensive metabolizers, intermediate metabolizers and poor metabolizers) for the CL/F. In addition, a combination of CYP3A5 and CYP2C19 genotypes was found to be associated with a significant difference (P < 0.005) in the CL/F. When including these genotypes, the interindividual variability of the CL/F was reduced from 34.1% in the base model to 27.3% in the final model. However, no significant differences between the ABCB1 genotypes and cilostazol pharmacokinetic parameters were observed. CONCLUSIONS The results of the present study indicate that CYP3A5 and CYP2C19 polymorphisms explain the substantial interindividual variability that occurs in the metabolism of cilostazol. [source]