ABC Proteins (abc + protein)

Distribution by Scientific Domains


Selected Abstracts


The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea

FEMS MICROBIOLOGY REVIEWS, Issue 4 2001
David J Kelly
Abstract Until recently, extracytoplasmic solute receptor (ESR)-dependent uptake systems were invariably found to possess a conserved ATP-binding protein (the ATP-binding cassette protein or ABC protein), which couples ATP hydrolysis to the translocation of the solute across the cytoplasmic membrane. While it is clear that this class of ABC transporter is ubiquitous in prokaryotes, it is now firmly established that other, unrelated types of membrane transport systems exist which also have ESR components. These systems have been designated tripartite ATP-independent periplasmic (TRAP) transporters, and they form a distinct class of ESR-dependent secondary transporters where the driving force for solute accumulation is an electrochemical ion gradient and not ATP hydrolysis. Currently, the most well characterised TRAP transporter at the functional and molecular level is the high-affinity C4-dicarboxylate transport (Dct) system from Rhodobacter capsulatus. This consists of three proteins; an ESR (DctP) and small (DctQ) and large (DctM) integral membrane proteins. The characteristics of this system are discussed in detail. Homologues of the R. capsulatus DctPQM proteins are present in a diverse range of prokaryotes, both bacteria and archaea, but not in eukaryotes. The deduced structures and possible functions of these homologous systems are described. In addition to the DctP family, other types of ESRs can be associated with TRAP transporters. A conserved family of immunogenic extracytoplasmic proteins is shown to be invariably associated with TRAP systems that contain a large DctQM fusion protein. All of the currently known archaeal systems are of this type. It is concluded that TRAP transporters are a widespread and ancient type of solute uptake system that transport a potentially diverse range of solutes and most likely evolved by the addition of auxiliary proteins to a single secondary transporter. [source]


Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae

FEBS JOURNAL, Issue 11 2003
Olivier Gueldry
In Saccharomyces cerevisiae, disruption of the YCF1 gene increases the sensitivity of cell growth to mercury. Transformation of the resulting ycf1 null mutant with a plasmid harbouring YCF1 under the control of the GAL promoter largely restores the wild-type resistance to the metal ion. The protective effect of Ycf1p against the toxicity of mercury is especially pronounced when yeast cells are grown in rich medium or in minimal medium supplemented with glutathione. Secretory vesicles from S. cerevisiae cells overproducing Ycf1p are shown to exhibit ATP-dependent transport of bis(glutathionato)mercury. Moreover, using ,-galactosidase as a reporter protein, a relationship between mercury addition and the activity of the YCF1 promoter can be shown. Altogether, these observations indicate a defence mechanism involving an induction of the expression of Ycf1p and transport by this protein of mercury,glutathione adducts into the vacuole. Finally, possible coparticipation in mercury tolerance of other ABC proteins sharing close homology with Ycf1p was investigated. Gene disruption experiments enable us to conclude that neither Bpt1p, Yor1p, Ybt1p nor YHL035p plays a major role in the detoxification of mercury. [source]


Nucleotide-binding domain 1 of cystic fibrosis transmembrane conductance regulator

FEBS JOURNAL, Issue 17 2000
Production of a suitable protein for structural studies
Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This protein belongs to the large ATP-binding cassette (ABC) family of transporters. Most patients with cystic fibrosis bear a mutation in the nucleotide-binding domain 1 (NBD1) of CFTR, which plays a key role in the activation of the channel function of CFTR. Determination of the three dimensional structure of NBD1 is essential to better understand its structure,function relationship, and relate it to the biological features of CFTR. In this paper, we report the first preparation of recombinant His-tagged NBD1, as a soluble, stable and isolated domain. The method avoids the use of renaturing processes or fusion constructs. ATPase activity assays show that the recombinant domain is functional. Using tryptophan intrinsic fluorescence, we point out that the local conformation, in the region of the most frequent mutation ,F508, could differ from that of the nucleotide-binding subunit of histidine permease, the only available ABC structure. We have undertaken three dimensional structure determination of NBD1, and the first two dimensional 15N- 1H NMR spectra demonstrate that the domain is folded. The method should be applicable to the structural studies of NBD2 or of other NBDs from different ABC proteins of major biological interest, such as multidrug resistance protein 1 or multidrug resistance associated protein 1. [source]


The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily

PLANT CELL & ENVIRONMENT, Issue 5 2000
T. G. E. Davies
ABSTRACT Solute transport systems are one of the major ways in which organisms interact with their environment. Typically, transport is catalysed by integral membrane proteins, of which one of the largest groups is the ATP-binding cassette (ABC) proteins. On the basis of sequence similarities, a large family of ABC proteins has been identified in Arabidopsis. A total of 60 open reading frames (ORFs) encoding ABC proteins were identified by BLAST homology searching of the nuclear genome. These 60 putative proteins include 89 ABC domains. Based on the assignment of transmembrane domains (TMDs), at least 49 of the 60 proteins identified are ABC transporters. Of these 49 proteins, 28 are full-length ABC transporters (eight of which have been described previously), and 21 are uncharacterized half-transporters. Three of the remaining proteins identified appear to be soluble, lacking identifiable TMDs, and most likely have non-transport functions. The eight other ORFs have homology to the nucleotide-binding and transmembrane components of multi-subunit permeases. The majority of ABC proteins found in Arabidopsis can, on the basis of sequence homology, be assigned to subfamilies equivalent to those found in the yeast genome. This assignment of the Arabidopsis ABC proteins into easily recognizable subfamilies (with distinguishable subclusters) is an important first step in the elucidation of their functional role in higher plants. [source]


The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2001
Léa Payen
Glibenclamide, a sulphonylurea widely used for the treatment of non-insulin-dependent diabetes mellitus, has been shown to inhibit the activities of various ATP-binding cassette (ABC) transporters. In the present study, its effects towards multidrug resistance protein 1 (MRP1), an ABC efflux pump conferring multidrug resistance and handling organic anions, were investigated. Intracellular accumulation of calcein, an anionic dye substrate for MRP1, was strongly increased by glibenclamide in a dose-dependent manner in MRP1-overexpressing lung tumour GLC4/Sb30 cells through inhibition of MRP1-related calcein efflux. By contrast, glibenclamide did not alter calcein levels in parental control GLC4 cells. Another sulphonylurea, tolbutamide, was however without effect on calcein accumulation in both GLC4/Sb30 and GLC4 cells. Glibenclamide used at 12.5 ,M was, moreover, found to strongly enhance the sensitivity of GLC4/Sb30 cells towards vincristine, an anticancer drug handled by MRP1. Efflux of carboxy-2,,7,-dichlorofluorescein, an anionic dye handled by the ABC transporter MRP2 sharing numerous substrates with MRP1 and expressed at high levels in liver, was also strongly inhibited by glibenclamide in isolated rat hepatocytes. In summary, glibenclamide reversed MRP1-mediated drug resistance likely through inhibiting MRP1 activity and blocked organic anion efflux from MRP2-expressing hepatocytes. Such effects associated with the known inhibitory properties of glibenclamide towards various others ABC proteins suggest that this sulphonylurea is a general inhibitor of ABC transporters. British Journal of Pharmacology (2001) 132, 778,784; doi:10.1038/sj.bjp.0703863 [source]