Brassica Napus (brassica + napu)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Brassica Napus

  • resynthesized brassica napu

  • Terms modified by Brassica Napus

  • brassica napu l.

  • Selected Abstracts


    The exopolysaccharide of Rhizobium sp.

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2008
    Brassica napus roots but contributes to root colonization, YAS34 is not necessary for biofilm formation on Arabidopsis thaliana
    Summary Microbial exopolysaccharides (EPSs) play key roles in plant,microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root,soil interface, root colonization, but not in biofilm formation. [source]


    Seed roasting improves the oxidative stability of canola (B.,napus) and mustard (B.,juncea) seed oils

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 4 2008
    Chakra Wijesundera
    Abstract Animal fats and partially hydrogenated vegetable oils (PHVO) have preferentially been used for deep-frying of food because of their relatively high oxidative stability compared to natural vegetable oils. However, animal fats and PHVO are abundant sources of saturated fatty acids and trans fatty acids, respectively, both of which are detrimental to human health. Canola (Brassica napus) is the primary oilseed crop currently grown in Australia. Canola quality Indian mustard (Brassica juncea) is also being developed for cultivation in hot and low-rainfall areas of the country where canola does not perform well. A major impediment to using these oils for deep-frying is their relatively high susceptibility to oxidation, and so any processing interventions that would improve the oxidative stability would increase their prospects of use in commercial deep-frying. The oxidative stability of both B.,napus and B.,juncea crude oils can be improved dramatically by roasting the seeds (165,°C, 5,min) prior to oil extraction. Roasting did not alter the fatty acid composition or the tocopherol content of the oils. The enhanced oxidative stability of the oil, solvent-extracted from roasted seeds, is probably due to 2,6-dimethoxy-4-vinylphenol produced by thermal decarboxylation of the sinapic acid naturally occurring in the canola seed. [source]


    Comparative analysis of phytosterol components from rapeseed (Brassica napus,L.) and olive (Olea europaea,L.) varieties

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2006
    Muhammet K. Gül
    Abstract Phytosterols occur in relatively high concentration in the seeds of rapeseed (Brassica napus,L.) and in lower concentration in olive (Olea europaea,L.) oil. The aim of this research was to investigate some new rapeseed varieties and olive genotypes that are grown in Northwest Turkey and to compare the phytosterol contents of both crops. For rapeseed, the data were collected in the growing seasons 2004,2005 from a field experiment with 19,new rapeseed varieties and three replications. For olives, 21,different varieties were used in the 2004,2005 and 2005,2006 growing seasons. The separation and identification of free phytosterols and the analysis of their contents were successfully achieved using the capillary column-gas chromatographic method. According to the obtained results, for rapeseed, sitosterol (1.54,2.36,g/kg) was the major component of total phytosterols, followed by campesterol (0.02,1.58,g/kg) and brassicasterol (0.26,0.58,g/kg). Regarding the olive varieties, the sitosterol content changed between 1.03 and 2.01,g/kg, followed by avenasterol ranging from 0.07 to 0.44,g/kg. The brassicasterol, campesterol and stigmasterol contents did not affect the total amount of sterols. The total phytosterol content ranged between 4.25 and 11.37,g/kg for rapeseed and 1.29 and 2.38,g/kg for olives. [source]


    Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere

    FEMS MICROBIOLOGY ECOLOGY, Issue 3 2002
    Stephen Gyamfi
    Abstract A containment experiment was carried out in order to evaluate possible shifts in eubacterial and Pseudomonas rhizosphere community structures due to the release of genetically modified Basta-tolerant oilseed rape and the associated herbicide application. Treatments included cultivation of the transgenic plant as well as of the wild-type cultivar in combination with mechanical removal of weeds and the application of the herbicides Basta (active ingredient: glufosinate) and Butisan S (active ingredient: metazachlor). Rhizosphere soil was sampled from early and late flowering plants as well as from senescent plants. A culture-independent approach was chosen to characterize microbial communities based on denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from rhizosphere DNA using eubacterial and Pseudomonas -specific PCR primers. Dominant pseudomonads in the rhizosphere were analyzed by sequence analysis. Whole community and Pseudomonas electrophoresis fingerprints revealed slightly altered microbial communities in the rhizosphere of transgenic plants; however, effects were minor as compared to the plant developmental stage-dependent shifts. Both herbicides caused transient changes in the eubacterial and Pseudomonas population structure, whereas differences due to the genetic modification were still detected at the senescent growth stage. The observed differences between transgenic and wild-type lines were most likely due to unintentionally modified plant characteristics such as altered root exudation. [source]


    Pan-European regional-scale modelling of water and N efficiencies of rapeseed cultivation for biodiesel production

    GLOBAL CHANGE BIOLOGY, Issue 1 2009
    MARIJN VAN DER VELDE
    Abstract The energy produced from the investment in biofuel crops needs to account for the environmental impacts on soil, water, climate change and ecosystem services. A regionalized approach is needed to evaluate the environmental costs of large-scale biofuel production. We present a regional pan-European simulation of rapeseed (Brassica napus) cultivation. Rapeseed is the European Union's dominant biofuel crop with a share of about 80% of the feedstock. To improve the assessment of the environmental impact of this biodiesel production, we performed a pan-European simulation of rapeseed cultivation at a 10 × 10 km scale with Environmental Policy Integrated Climate (EPIC). The model runs with a daily time step and model input consists of spatialized meteorological measurements, and topographic, soil, land use, and farm management practices data and information. Default EPIC model parameters were calibrated based on literature. Modelled rapeseed yields were satisfactory compared with yields at regional level reported for 151 regions obtained for the period from 1995 to 2003 for 27 European Union member countries, along with consistent modelled and reported yield responses to precipitation, radiation and vapour pressure deficit at regional level. The model is currently set up so that plant nutrient stress is not occurring. Total fertilizer consumption at country level was compared with IFA/FAO data. This approach allows us to evaluate environmental pressures and efficiencies arising from and associated with rapeseed cultivation to further complete the environmental balance of biofuel production and consumption. [source]


    Oilseed rape crops distort plant,pollinator interactions

    JOURNAL OF APPLIED ECOLOGY, Issue 1 2010
    Tim Diekötter
    Summary 1. New incentives at the national and international level frequently lead to substantial structural changes in agricultural landscapes. Subsidizing energy crops, for example, recently fostered a strong increase in the area cultivated with oilseed rape Brassica napus across the EU. These changes in landscape structure affect biodiversity and associated ecosystem services. 2. Mass-flowering oilseed rape has been shown to positively affect colony growth and densities of bumblebees, which may enhance pollination services in agroecosystems. Not considered, however, have been species-specific traits of pollinators resulting in disproportionate benefits from these recurrent resource pulses. A subsequent community shift towards the subsidized species potentially distorts plant,pollinator interactions in the surrounding landscape. 3. We analysed the effects of mass-flowering crops on the abundance of legitimate long-tongued bumblebee pollinators, nectar robbing by illegitimate short-tongued bumblebees and seed set in the long-tubed flowers of red clover Trifolium pratense in 12 landscape sectors with differing amounts of oilseed rape. 4. Densities of long-tongued bumblebees visiting long-tubed plants decreased with increasing amounts of oilseed rape. The simultaneous increase of nectar robbing suggests that resource depletion is a likely explanation for this decline which may lead to a distortion in plant,pollinator interactions. The decline in long-tongued bumblebees, however, did not result in an immediate effect on seed set. In contrast, seed set increased with increasing amounts of semi-natural habitats, indicating the positive effects of these habitats on the legitimate long-tongued pollinators. 5.Synthesis and applications. Accounting for species-specific traits is essential in evaluating the ecological impacts of land-use change. The disproportional trait-specific benefits of increasing oilseed rape to short-tongued bumblebees may abet an increasingly pollinator-dependent agriculture but simultaneously threaten the more specialized and rare long-tongued species and their functions. Semi-natural habitats were found to positively affect seed set in long-tubed plants indicating that they can counteract the potentially distorting effects of transient mass-flowering crops on plant,pollinator interactions in agroecosystems. Future agri-environmental schemes should aim to provide diverse and continuous resources matching trait-specific requirements of various pollinators in order to avoid resource competition. Thereby they harmonize the economic interest in abundant pollinators and the conservation interest in protecting rare species. [source]


    Competitive dynamics in two- and three-component intercrops

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2007
    METTE KLINDT ANDERSEN
    Summary 1Intercropping is receiving increasing attention because it offers potential advantages for resource utilization, decreased inputs and increased sustainability in crop production, but our understanding of the interactions among intercropped species is still very limited. 2We grew pea Pisum sativum, barley Hordeum vulgare and rape Brassica napus as sole crops and intercrops under field conditions using a replacement design. We collected total dry matter data from sequential harvests and fitted the data to a logistic growth model. At each harvest we estimated the relative Competitive Strength (CS) of the three crops by fitting the data to a simple interspecific competition model. 3The pea monocrop produced the largest amount of biomass from the middle to the end of the growth period, but pea was not dominant in intercrops. 4Fitting data to a logistic growth model emphasizes the importance of initial size differences for interactions among intercrops. Barley was the dominant component of the intercrops largely because of its initial size advantage. The competitive effect of barley on its companion crops, measured as CS, increased throughout most of the growing season. 5The performance of each crop species was very different when it grew with a second species rather than in monoculture, but addition of a third crop species had only minor effects on behaviour of the individual crops. 6Synthesis and applications. Including sequential harvests in experiments on intercropping can provide important information about how competitive hierarchies are established and change over time. Our results suggest that increased understanding of the role of asymmetric competition among species and the resulting advantages of early germination and seedling emergence would be valuable in designing intercrops. More focus on understanding the mechanisms that govern interactions between intercropped species is needed for designing optimized intercropping systems. [source]


    The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: implications for landscape-scale gene dispersal

    JOURNAL OF APPLIED ECOLOGY, Issue 6 2006
    KATRINA E. HAYTER
    Summary 1It is important to understand the pollination processes that generate landscape-scale gene dispersal in plants, particularly in crop plants with genetically modified (GM) varieties. In one such crop, Brassica napus, the situation is complicated by uncertainty over the relative importance of two pollen vectors, wind and insects. 2We investigated pollination in two fields of B. napus that bloomed at different times of year (April vs. July) and attracted different abundances of foraging social bees. Rates of pollen transfer were quantified by counting the pollen grains deposited on stigmas and remaining in the anthers at intervals after flower opening. 3Flowers open in April were adequately pollinated only after 5 days and only 10% received even a single bee visit. Flowers open in July received three bee visits per hour and were fully pollinated within 3 h. 4Based on published measurements of airborne pollen dispersal, we estimate that wind-pollination from a hypothetical field 1 km distant could have fertilized up to 0·3% of the field's seed when bees were scarce in April but only up to 0·007% when bees were abundant in July. 5The efficiency of pollination (the proportion of pollen released from anthers that landed on receptive stigmas) was seven times greater in July (1·5%) than in April (0·2%). The relatively high efficiency of insect pollination may help to explain the evolutionary maintenance of entomophily. 6Synthesis and applications. Our results begin to resolve a long-standing inconsistency among previous studies by suggesting that the susceptibility of fields of B. napus to long-distance cross-pollination by wind depends on the level of bee activity. Models for predicting GM gene flow at the landscape-scale in this crop should take this into account. [source]


    Importance of long-term research in classical biological control: an analytical review of a release against the cabbage seedpod weevil in North America

    JOURNAL OF APPLIED ENTOMOLOGY, Issue 8 2006
    D. R. Gillespie
    Abstract:, Cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Col., Curculionidae), is an invasive alien pest that is spreading in North America. To aid with planning for introductions of European parasitoids in North America, we examined the status of the only classical biological control release against this pest in North America, which in 1949 introduced Mesopolobus morys, Stenomalina gracilis and Trichomalus perfectus (Hym., Pteromalidae). Weevils and parasitoids were reared in 2005 from mass collections of seedpods of Brassica napus, Brassica rapa and Raphanus raphanistrum (Brassicaceae) from 18 sites in the Fraser Valley, near Vancouver, British Columbia, Canada. Of the three European parasitoid species that were originally released, only S. gracilis was found. The predominant hymenopterous parasitoid species were Trichomalus lucidus, S. gracilis, Mesopolobus moryoides (Pteromalidae), Necremnus tidius (Eulophidae) and Eupelmus vesicularis (Eupelmidae). These constituted over 97% of the parasitoids reared, although overall parasitism was low. Only M. moryoides is clearly North American in distribution; other than S. gracilis, the remaining species were either accidentally introduced or are Holarctic in distribution. Based on these results, re-releases of M. morys and T. perfectus in North America should be considered as part of a classical biological control programme. However, redistribution of S. gracilis is not recommended at present because of potential conflicts with biological control programmes against weeds. Ongoing re-examination of classical biological control programmes can further our understanding of failure of release programmes, particularly when re-examination can be made in the light of improved taxonomy and systematics of the target and agent species. [source]


    Influence of sulphur plant nutrition on oviposition and larval performance of the cabbage root fly

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2005
    Cristina Marazzi
    Abstract 1,Oilseed rape plants (Brassica napus) (L.) (Brassicaceae) were grown under different levels of sulphur supply and tested for the oviposition preference and larval performance of cabbage root flies Delia radicum (L.) (Diptera: Anthomyiidae). 2,Adult females laid more than three-fold as many eggs on control Sn (normal field concentration) than on sulphur-free S0 plants. By contrast, no significant difference was observed between control and double normal concentration (S+) plants. 3,The larval performance was evaluated using three additional, intermediate sulphur levels between S0 and Sn, and the plants were infected with equal numbers of eggs. The percentage pupation at the end of larval feeding ranged from 6% (S0) to 32% (Sn or S+) and the average number of pupae, or of emerging flies, was significantly correlated with sulphur application. 4,The weight of emerging males and females was correlated with plant sulphur supply. 5,The duration of development from eggs to adult emergence was approximately 2 days longer in females than in males. Females originating from plants with a normal or higher sulphur supply tended to emerge 1,2 days earlier. [source]


    Can we stop transgenes from taking a walk on the wild side?

    MOLECULAR ECOLOGY, Issue 5 2008
    KATRINA M. DLUGOSCH
    Abstract Whether the potential costs associated with broad-scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be minimized. But is it possible to achieve containment of engineered genetic elements in the context of large scale agricultural production? In a previous study, Warwick et al. (2003) documented transgene escape via gene flow from herbicide resistant (HR) canola (Brassica napus) into neighbouring weedy B. rapa populations (Fig. 1) in two agricultural fields in Quebec, Canada. In a follow-up study in this issue of Molecular Ecology, Warwick et al. (2008) show that the transgene has persisted and spread within the weedy population in the absence of selection for herbicide resistance. Certainly a trait like herbicide resistance is expected to spread when selected through the use of the herbicide, despite potentially negative epistatic effects on fitness. However, Warwick et al.'s findings suggest that direct selection favouring the transgene is not required for its persistence. So is there any hope of preventing transgene escape into the wild? Figure 1. Weedy Brassica rapa (orange flags) growing in a B. napus field. (Photo: MJ Simard) [source]


    Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes

    MOLECULAR ECOLOGY, Issue 10 2005
    MATTHEW D. HALFHILL
    Abstract Concerns exist that transgenic crop × weed hybrid populations will be more vigorous and competitive with crops compared with the parental weed species. Hydroponic, glasshouse, and field experiments were performed to evaluate the effects of introgression of Bacillus thuringiensis (Bt) cry1Ac and green fluorescent protein (GFP) transgenes on hybrid productivity and competitiveness in four experimental Brassica rapa × transgenic Brassica napus hybrid generations (F1, BC1F1, BC2F1 and BC2F2). The average vegetative growth and nitrogen (N) use efficiency of transgenic hybrid generations grown under high N hydroponic conditions were lower than that of the weed parent (Brassica rapa, AA, 2n = 20), but similar to the transgenic crop parent, oilseed rape (Brassica napus, AACC, 2n = 38). No generational differences were detected under low N conditions. In two noncompetitive glasshouse experiments, both transgenic and nontransgenic BC2F2 hybrids had on average less vegetative growth and seed production than B. rapa. In two high intraspecific competition field experiments with varied herbivore pressure, BC2F2 hybrids produced less vegetative dry weight than B. rapa. The competitive ability of transgenic and nontransgenic BC2F2 hybrids against a neighbouring crop species were quantified in competition experiments that assayed wheat (Triticum aestivum) yield reductions under agronomic field conditions. The hybrids were the least competitive with wheat compared with parental Brassica competitors, although differences between transgenic and nontransgenic hybrids varied with location. Hybridization, with or without transgene introgression, resulted in less productive and competitive populations. [source]


    The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era

    MOLECULAR PLANT PATHOLOGY, Issue 3 2005
    T. ROUXEL
    SUMMARY Leptosphaeria maculans is the most ubiquitous pathogen of Brassica crops, and mainly oilseed brassicas (oilseed rape, canola), causing the devastating ,stem canker' or ,blackleg'. This review summarizes our current knowledge on the pathogen, from taxonomic issues to specific life traits. It mainly illustrates the importance of formal genetics approaches on the pathogen side to dissect the interaction with the host plants. In addition, this review presents the main current research topics on L. maculans and focuses on the L. maculans genome initiative recently begun, including its main research issues. Taxonomy:,Leptosphaeria maculans (Desm.) Ces. & de Not. (anamorph Phoma lingam Tode ex Fr.). Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes (Loculoascomycetes), Order Pleosporales, Genus Leptosphaeria, Species maculans. Host range:, cultivated Brassicas such as Brassica napus (oilseed rape, canola), B. rapa, B. juncea, B. oleracea, etc., along with numerous wild crucifers species. Arabidopsis thaliana was recently reported to be a potential host for L. maculans. Primary disease symptoms are greyish-green collapse of cotyledon or leaf tissue, without a visible margin, bearing tiny black spots (pycnidia). The fungus then develops an endophytic symptomless growth for many months. Secondary symptoms, at the end of the growing season, are dry necroses of the crown tissues with occasional blackening (stem canker or blackleg) causing lodging of the plants. Pseudothecia differentiate on leftover residues. Seedling damping-off and premature ripening are also reported under certain environmental conditions. Useful websites:,Leptosphaeria maculans sequencing project at Genoscope: http://www.genoscope.cns.fr/externe/English/Projets/Projet_DM/organisme_DM.html; the SECURE site: http://www.secure.rothamsted.ac.uk/ the ,Blackleg' group at the University of Melbourne: http://www.botany.unimelb.edu.au/blackleg/overview.htm [source]


    The first meiosis of resynthesized Brassica napus, a genome blender

    NEW PHYTOLOGIST, Issue 1 2010
    E. Szadkowski
    Summary ,Polyploidy promotes the restructuring of merged genomes within initial generations of resynthesized Brassica napus, possibly caused by homoeologous recombination at meiosis. However, little is known about the impact of the first confrontation of two genomes at the first meiosis which could lead to genome exchanges in progeny. Here, we assessed the role of the first meiosis in the genome instability of synthetic B. napus. ,We used three different newly resynthesized B. napus plants and established meiotic pairing frequencies for the A and C genomes. We genotyped the three corresponding progenies in a cross to a natural B. napus on the two homoeologous A1 and C1 chromosomes. Pairing at meiosis in a set of progenies with various rearrangements was scored. ,Here, we confirmed that the very first meiosis of resynthesized plants of B. napus acts as a genome blender, with many of the meiotic-driven genetic changes transmitted to the progenies, in proportions that depend significantly on the cytoplasm background inherited from the progenitors. ,We conclude that the first meiosis generates rearrangements on both genomes and promotes subsequent restructuring in further generations. Our study advances the knowledge on the timing of genetic changes and the mechanisms that may bias their transmission. [source]


    Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources

    NEW PHYTOLOGIST, Issue 1 2007
    Stuart J. Pearse
    Summary ,,The relationship between carboxylate release from roots and the ability of the species to utilize phosphorus from sparingly soluble forms was studied by comparing Triticum aestivum, Brassica napus, Cicer arietinum, Pisum sativum, Lupinus albus, Lupinus angustifolius and Lupinus cosentinii. ,,Plants were grown in sand and supplied with 40 mg P kg,1 in the sparingly soluble forms AlPO4, FePO4 or Ca5OH(PO4)3, or as soluble KH2PO4; control plants received no P. ,,The ability to utilize sparingly soluble forms of P differed between forms of P supplied and species. Pisum sativum and C. arietinum did not access AlPO4 or FePO4 despite releasing carboxylates into the rhizosphere. ,,Species accessed different forms of sparingly soluble P, but no species was superior in accessing all forms. We conclude that a single trait cannot explain access to different forms of sparingly soluble P, and hypothesize that in addition to carboxylates, rhizosphere pH and root morphology are key factors. [source]


    Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization

    NEW PHYTOLOGIST, Issue 3 2001
    F. J. Zhao
    Summary ,,To examine whether root exudates of the Zn/Cd hyperaccumulator Thlaspi caerulescens play a role in metal hyperaccumulation, we compared the metal mobilization capacity of root exudates collected from two ecotypes of T. caerulescens, and from the nonaccumulators wheat (Triticum aestivum) and canola (Brassica napus). ,,Plants were grown hydroponically and three treatments (control, ,Fe and ,Zn) were later imposed for 2 wk before collection of root exudates. ,,On a basis of root d. wt, the total soluble organic C in the root exudates of T. caerulescens was similar to that of wheat, and significantly higher than that of canola. In all treatment, the root exudates of T. caerulescens and canola mobilized little Cu and Zn from Cu- or Zn-loaded resins, and little Zn, Cd, Cu or Fe from a contaminated calcareous soil. By contrast, the root exudates of wheat generally mobilized more metals from both resin and soil. In particular, the ,Fe treatment, and to a lesser extent the ,Zn treatment, elicited large increases in the metal mobilization capacity of the root exudates from wheat. ,,We conclude that root exudates from T. caerulescens do not significantly enhance mobilization of Zn and Cd, and therefore are not involved in Zn and Cd hyperaccumulation. [source]


    Comparing the impact of conventional pesticide and use of a transgenic pest-resistant crop on the beneficial carabid beetle Pterostichus melanarius

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 10 2006
    Evan A Mulligan
    Abstract The potential impact of a chemical pesticide control method has been compared with that of transgenic plants expressing a protease inhibitor conferring insect resistance by utilising a tritrophic system comprising the crop plant Brassica napus (L.) (Oilseed rape), the pest mollusc Deroceras reticulatum (Müller) and the predatory carabid beetle Pterostichus melanarius (Illiger). Cypermethrin, as the most widely used pesticide in UK oilseed rape (OSR) cultivation, was selected as the conventional treatment. OSR expressing a cysteine protease inhibitor, oryzacystatin-1 (OC-1), was the transgenic comparator. In feeding trials, D. reticulatum showed no significant long-term effects on measured life history parameters (survival, weight gain, food consumption) as a result of exposure to either the cypermethrin or OC-1 treatment. However, D. reticulatum was able to respond to the presence of the dietary inhibitor by producing two novel proteases following exposure to OC-1-expressing OSR. Similarly, P. melanarius showed no detectable alterations in mortality, weight gain or food consumption when feeding on D. reticulatum previously fed either pesticide-contaminated or GM plant material. Furthermore, as with the slug, a novel form of protease, approximately Mr 27 kDa, was induced in the carabid in response to feeding on slugs fed OC-1-expressing OSR. Copyright © 2006 Society of Chemical Industry [source]


    Quantification of seed oil from species with varying oil content using supercritical fluid extraction

    PHYTOCHEMICAL ANALYSIS, Issue 6 2008
    Charlotte E. Seal
    Abstract Introduction: The quantity and composition of seed oil affects seed viability and storability and hence the value of a species as a resource for nutrition and plant conservation. Supercritical fluid extraction with carbon dioxide (SFE-CO2) offers a rapid, environmentally friendly alternative to traditional solvent extraction. Objective: To develop a method using SFE-CO2 to quantify the seed oil content in a broad range of species with high to low oil contents. Methodology: Seed oil was extracted using SFE-CO2 from four crop species representing high, medium and low oil content: Helianthus annuus, Asteraceae, with ca. 55% oil; Brassica napus, Brassicaceae, with ca. 50% oil; Glycine max, Fabaceae, with ca. 20% oil; and Pisum sativum, Fabaceae, with ca. 2% oil. Extraction pressures of 5000, 6000 and 7500 psi and temperatures of 40, 60 and 80°C were examined and a second step using 15% ethanol as a modifier included. Oil yields were compared with that achieved from Smalley Butt extraction. The optimised SFE-CO2 method was validated on six species from taxonomically distant families and with varying oil contents: Swietenia humilis (Meliaceae), Stenocereus thurberi (Cactaceae), Sinapis alba (Brassicaceae), Robinia pseudoacacia (Fabaceae), Poa pratensis (Poaceae) and Trachycarpus fortunei (Arecaceae). Results: The two-step extraction at 6000 psi and 80°C produced oil yields equivalent to or higher than Smalley Butt extraction for all species, including challenging species from the Brassicaceae family. Conclusion: SFE-CO2 enables the rapid analysis of seed oils across a broad range of seed oil contents. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine

    PLANT BIOTECHNOLOGY JOURNAL, Issue 7 2009
    Olga P. Yurchenko
    Summary The gene encoding a 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus was over-expressed in developing seeds of Arabidopsis thaliana. Biochemical analysis of T2 and T3 A. thaliana seeds revealed a significant increase in polyunsaturated fatty acids (FAs) (18:2cis,9,12 and 18:3cis,9,12,15) at the expense of very long monounsaturated FA (20:1cis,11) and saturated FAs. In vitro assays demonstrated that recombinant B. napus ACBP (rBnACBP) strongly increases the formation of phosphatidylcholine (PC) in the absence of added lysophosphatidylcholine in microsomes from ,YOR175c yeast expressing A. thaliana lysophosphatidylcholine acyltransferase (AthLPCAT) cDNA or in microsomes from microspore-derived cell suspension cultures of B. napus L. cv. Jet Neuf. rBnACBP or bovine serum albumin (BSA) were also shown to be crucial for AthLPCAT to catalyse the transfer of acyl group from PC into acyl-CoA in vitro. These data suggest that the cytosolic 10-kDa ACBP has an effect on the equilibrium between metabolically active acyl pools (acyl-CoA and phospholipid pools) involved in FA modifications and triacylglycerol bioassembly in plants. Over-expression of ACBP during seed development may represent a useful biotechnological approach for altering the FA composition of seed oil. [source]


    The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola

    PLANT BIOTECHNOLOGY JOURNAL, Issue 4 2008
    Alison Strange
    Summary Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution. [source]


    Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene

    PLANT BIOTECHNOLOGY JOURNAL, Issue 1 2006
    Hani Al-Ahmad
    Summary Transgenic oilseed rape (Brassica napus) plants may remain as ,volunteer' weeds in following crops, complicating cultivation and contaminating crop yield. Volunteers can become feral as well as act as a genetic bridge for the transfer of transgenes to weedy relatives. Transgenic mitigation using genes that are positive or neutral to the crop, but deleterious to weeds, should prevent volunteer establishment, as previously intimated using a tobacco (Nicotiana tabacum) model. A transgenically mitigated (TM), dwarf, herbicide-resistant construct using a gibberellic acid-insensitive (,gai) gene in the B. napus crop was effective in offsetting the risks of transgene establishment in volunteer populations of B. napus. This may be useful in the absence of herbicide, e.g. when wheat is rotated with oilseed rape. The TM dwarf B. napus plants grown alone had a much higher yield than the non-transgenics, but were exceedingly unfit in competition with non-transgenic tall cohorts. The reproductive fitness of TM B. napus was 0% at 2.5-cm and 4% at 5-cm spacing between glasshouse-grown plants relative to non-transgenic B. napus. Under screen-house conditions, the reproductive fitness of TM B. napus relative to non-transgenic B. napus was less than 12%, and the harvest index of the TM plants was less than 40% of that of the non-transgenic competitors. The data clearly indicate that the ,gai gene greatly enhances the yield in a weed-free transgenic crop, but the dwarf plants can be eliminated when competing with non-transgenic cohorts (and presumably other species) when the selective herbicide is not used. [source]


    Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation

    PLANT BREEDING, Issue 5 2008
    A. M. R. Ferrie
    Abstract A microspore mutagenesis protocol was developed for Brassica rapa, Brassica napus and Brassica juncea for the production of double haploid lines with novel fatty acid profiles in the seed oil. Freshly isolated Brassica microspores were first cultured with ethyl methane sulphonate (EMS) for 1.5 h. The EMS was removed and the microspores were then cultured according to the standard Brassica microspore culture protocol. This protocol was used to generate over 80 000 Brassica haploid/double haploid plants. Field evaluation of B. napus and B. juncea double haploids was conducted between 2000 and 2003. Fatty acid analysis of the B. napus double haploid lines showed that saturated fatty acid proportions ranged from 5.0% to 7.7%. For B. juncea, saturate proportions ranged from 5.4% to 9.5%. Of the 7000 B. rapa lines that were analysed, 197 lines had elevated oleic acid (>55%), 69 lines had reduced ,-linolenic acid (<8%) and 157 lines had low saturated fatty acid proportions (<5%), when compared with the parental lines. [source]


    Development and primary genetic analysis of a fertility temperature-sensitive polima cytoplasmic male sterility restorer in Brassica napus

    PLANT BREEDING, Issue 3 2007
    Z. X. Fan
    Abstract Over the past decade, the polima cytoplasmic male sterility (pol CMS) three-line and two-line systems have been developed for the production of hybrid seed in Brassica napus oilseed rape in China. The discovery of the novel pol CMS restorer line FL-204 is described here. It restores male fertility of hybrid plants in the pol CMS system, but hybrid seed production can only be carried out under autumn sowing in Wuhan in south China under moderate temperatures at flowering. The restorer cannot be used as a male for hybrid seed production in northwestern China (Gansu) under spring sowing conditions, because there it is more or less male sterile due to high temperatures at flowering. Because of this behaviour, it is referred to as a fertility temperature-sensitive restorer (FTSR) in this paper. F2, BC1 as well as double haploid populations were constructed to determine the inheritance of fertility restoration of FL-204 in the autumn at Wuhan and under spring sowing conditions at Gansu, respectively. Deviations from Mendelian genetics were observed. It was hypothesized that the change of fertility was the result of the interaction between nuclear genes [restoring gene (Rf) and temperature-sensitive genes (ts)] and the cytoplasm. The Rf gene in FL-204 was incapable of restoring male fertility of pol CMS lines under spring sowing conditions at Gansu where it is inactivated by the recessive ts gene present in FL-204. However, the ts gene(s) could be non-functional under moderate temperature conditions at flowering at Wuhan which allows full expression of male fertility in FL-204. The recessive ts gene(s) can only be expressed in plants containing the pol sterile cytoplasm. A method for the utilization of the FTSR pol CMS restorer FL-204 for the production of hybrid seed in B. napus oilseed rape is proposed. [source]


    Identification and inheritance of a partially dominant gene for yellow seed colour in Brassica napus

    PLANT BREEDING, Issue 1 2005
    X. P. Liu
    Abstract A yellow-seeded doubled haploid (DH) line no. 2127-17, derived from a resynthesized Brassica napus L., was crossed with two black-seeded Brassica cultivars ,Quantum' and ,Sprint' of spring type. The inheritance of seed colour was investigated in the F2, and BC1 populations of the two crosses and also in the DH population derived from the F1 of the cross ,Quantum'× no. 2127-17. Seed colour analysis was performed with the colorimeter CR-300 (Minolta, Japan) together with a visual classification system. The immediate F1 seeds of the reciprocals in the two crosses had the same colour as the self-pollinated seeds of the respective black- and yellow-seeded female parents, indicating the maternal control of seed colour. The F1 plants produced yellow-brown seeds that were darker in colour than the seeds of no. 2127-17, indicating the partial dominance of yellow seed over black. In the segregating BC1 progenies of the two crosses, the frequencies of the black- and yellow-seeded plants fit well with a 1 : 1 ratio. In the cross with ,Quantum', the frequencies of yellow-seeded and black-seeded plants fit with a 13 : 3 ratio in the F2 progeny, and with a 3 : 1 ratio in the DH progeny. However, a 49 : 15 segregation ratio was observed for the yellow-seeded and black-seeded plants in the F2 progeny of the cross with ,Sprint'. It was postulated from these results that seed colour was controlled by three pairs of genes. A dominant yellow-seeded gene (Y) was identified in no. 2127-17 that had epistatic effects on the two independent dominant black-seeded genes (B and C), thereby inhibiting the biosynthesis of seed coat pigments. [source]


    Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential

    PLANT BREEDING, Issue 1 2005
    Article first published online: 28 JUN 200, M. H. Rahman
    Self-incompatibility (SI) in Brassica has been considered as a pollination control mechanism for commercial hybrid seed production, and so far has been extensively used in vegetable types of Brassicas. Oilseed rape Brassica napus (AACC) is naturally self-compatible in contrast to its parental species that are generally self-incompatible. Introduction of S-alleles from its parental species into oilseed rape is therefore needed to use this pollination control mechanism in commercial hybrid seed production. Self-incompatible lines of B. napus, carrying SI alleles in both A and C genomes, were resynthesized from self-incompatible B. oleracea var. italica (CC) cv.,Green Duke' and self-incompatible B. rapa ssp. oleifera (AA) cv. ,Horizon', ,Colt' and ,AC Parkland'. All resynthesized B. napus lines exhibited strong dominant SI phenotype. Reciprocal cross-compatibility was found between some of these self-incompatible lines. The inheritance of S-alleles in these resynthesized B. napus was digenic confirming that each of the parental genomes contributed one S-locus in the resynthesized B. napus lines. However, the presence of two S-loci in the two genomes was found not to be essential for imparting a strong SI phenotype. Possible use of these dominant self-incompatible resynthesized B. napus lines in hybrid breeding is discussed. [source]


    Genetic diversity among populations and breeding lines from recurrent selection in Brassica napus as revealed by RAPD markers

    PLANT BREEDING, Issue 1 2004
    M. Yuan
    Abstract Recurrent selection facilitated by dominant male sterility has been conducted to broaden the genetic basis for cultivar development in Brassica napus. This study aimed to evaluate the genetic variation in four base populations (C0-C3) and breeding lines from two of the populations produced during recurrent selection by random amplified polymorphic DNA (Rapd) markers. Genetic variation in four populations declined gradually with the advance of selection cycles as measured by expected genetic heterozygosity (from 0.2058 in C0 to 0.1536 in C3) but the decline was not statistically significant. When compared with the average genetic distances for 21 germplasm collections with wide geographical and genetic origins (0.4712) and seven breeding lines from pedigree selection (0.2059), seven breeding lines selected from the C1 population and 11 from the C3 population had a larger average genetic distance (0.5339 and 0.5486, respectively). Clustering analysis indicated that the lines from recurrent selection had a much lower genetic similarity than lines from pedigree selection. Our results suggest that base populations derived from recurrent selection could provide a wider genetic variation for selection of breeding lines with more broad genetic bases. [source]


    Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars,

    PLANT BREEDING, Issue 6 2003
    F. Seyis
    Abstract Resynthesized (RS) rapeseed generated from interspecific hybridization between suitable forms of Brassica rapa L. (syn. campestris; genome AA, 2n = 20) and B. oleracea L. (CC, 2n = 18) represents a potentially important resource to expand genetic diversity in the narrow gene pool of oilseed rape (B. napus L., AACC, 2n = 38). In this study 165 RS rapeseed lines originating from crosses between an Indian Yellow Sarson (B. rapa ssp. trilocularis) and five different cauliflower (B. oleracea convar. botrytis) cultivars were studied using amplified fragment length polymorphism (AFLP) markers and their genetic diversity was compared in relationship to an assortment of 40 diverse spring oilseed and fodder rape varieties. Using three AFLP primer combinations, a total of 467 polymorphic bands were scored. Cluster analysis allowed differentiation among the different RS lines, which, as expected, were genetically highly divergent from the cultivars. The genetic diversity of the material is discussed in relation to its morphological variability with a view to the implementation of RS lines in oilseed rape breeding. [source]


    Identification of RAPD markers linked to recessive genes conferring siliqua shatter resistance in Brassica rapa

    PLANT BREEDING, Issue 6 2003
    O. Mongkolporn
    Abstract Shattering of siliquae causes significant seed loss in canola (Brassica napus) production worldwide. There is little genetic variation for resistance to shatter in canola and, hence, the trait has been studied in B. rapa. Previous studies have shown two randomly segregating recessive genes to be responsible for shatter resistance. Three random amplified polymorphic DNA markers were identified as being linked to shatter resistance using bulked segregant analysis in a F3B. rapa population. The population was derived from a cross between a shatter-susceptible Canadian cultivar and a shatter-resistant Indian line. Of the three markers, RAC-3900 and RX-71000 were linked to recessive sh1 and sh2 alleles, and SAC-201300 was linked to both dominant Sh1 and Sh2 alleles. The common marker for the dominant wild-type allele for the two loci was explained to have resulted from duplication of an original locus and the associated markers through chromosome duplication and rearrangements in the process of evolution of the modern B. rapa from its progenitor that had a lower number of chromosomes. Segregation data from double heterozygous F3 families, although limited, indicated the markers were not linked to each other and provided further evidence for the duplication hypothesis. [source]


    Identification of a single dominant allele for resistance to blackleg in Brassica napus,Surpass 400'

    PLANT BREEDING, Issue 6 2003
    C.-X. Li
    Abstract The inheritance of resistance to blackleg (caused by Leptosphaeria maculans) was examined in the F1 and F2 of a cross between highly resistant canola ,Surpass 400' and susceptible ,Westar' in the field. Blackleg-infected canola straw was collected from the field and scattered among plants to increase disease development with the aid of natural rainfall. Disease severity on seedlings was assessed as the average number of lesions on leaves 1 and 2, and on adult plants as the percentage necrosis on a cross-section of stems immediately above the crown. All ,Westar' plants were susceptible (S) and all ,Surpass 400' and F1 plants were resistant (R) at both growth stages. Disease severity on F2 plants segregated 3 : 1 (R : S) as expected for a single dominant resistance allele in both the seedling and adult plant stages. There was a high proportion (91.1%) of matching reactions (R-R and S-S) between seedling and adult plants. ,Surpass 400' is the source of a single dominant allele for blackleg resistance in Brassica napus that is expressed strongly in both seedlings and adult plants. [source]


    Development of self-incompatible Brassica napus: (III) B. napus genotype effects on S-allele expression

    PLANT BREEDING, Issue 1 2003
    V. L. Ripley
    Abstract Use of self-incompatibility (SI) as a pollination control method for Brassica napus hybrid production requires the development of a sufficient number of S-alleles that are expressed consistently in a range of B. napus lines. Self-incompatibility (SI) alleles have been transferred from Brassica oleracea and Brassica rapa into B. napus var. oleifera. An understanding of expression of these alleles in B. napus is essential for their commercial use. Four SI B. napus doubled haploids containing the B. oleracea S-alleles S2, S5, S13 and S24 were crossed to three B. napus cultivars to measure the B. napus genetic background effect on S-allele expression. A line x tester analysis indicated that the largest source of variation in the expression rate of SI was the S-allele itself. The B. napus genotypes tested contained modifier gene(s), some that enhanced SI expression and others that inhibited SI expression. The B. napus Canadian cultivar ,Westar' generally had a negative effect on SI expression while the European cultivar ,Topas' had a positive effect on the B. oleracea S-allele expression. The B. oleracea S-allele S24 was very similar in expression to the B. rapa allele W1. The application of these results for the use of B. oleracea S-alleles for hybrid production in B. napus is discussed. [source]