Brassica Crops (brassica + crop)

Distribution by Scientific Domains


Selected Abstracts


Fertilizer affects the behaviour and performance of Plutella xylostella on brassicas

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009
Joanna T. Staley
Abstract 1,Foliar nitrogen concentration, which can be manipulated in crop plants by fertilizer supply, has long been recognized as a major factor in phytophagous insect abundance and performance. More recently, the type of fertilizer supplied has been shown to influence the abundance of some herbivore species. The diamondback moth Plutella xylostella is a global pest of Brassica crops. Although it has been the subject of numerous studies on host-plant resistance and pest control, few studies have addressed the effect of abiotic factors, such as nutrient supply, on its performance and behaviour. 2,We assessed oviposition preference, larval feeding preference and larval performance of P. xylostella on two cultivars of Brassica oleracea. Plants were grown using two fertilizer types, John Innes fertilizer and an organic animal manure, at high and low concentrations. 3,Plutella xylostella laid more eggs on cultivar Derby Day than Drago. Derby Day was also the cultivar on which larval performance was maximized. However, differences in larval performance between cultivars were only found when plants were grown in compost with John Innes fertilizer, and not when fertilized with animal manure. 4,Foliar nitrogen concentration was greater in plants grown in high fertilizer treatments but did not differ between cultivars. The concentrations of three glucosinolate compounds (glucoiberin, sinigrin and glucobrassicin) were greater in the high fertilizer treatments. Glucosinolate concentrations were higher in the Drago than the Derby Day cultivar. 5,These results are discussed in relation to the preference-performance hypothesis, and the assessment of plant resistance differences between cultivars using different types of fertilizer. [source]


Genetic diversity in pollen beetles (Meligethes aeneus) in Sweden: role of spatial, temporal and insecticide resistance factors

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2007
Nadiya Kazachkova
Abstract 1,Pollen beetles Meligethes aeneus are pests of oilseed Brassica crops that are subject to intensive chemical control. Resistance to pyrethroids has been reported. Although this insect is of great economic importance, little is known about its genetic properties and population structure. 2,Amplified fragment length polymorphism (AFLP) analysis with the restriction endonuclease combination EcoRI and PstI was performed on 133 samples of groups of three pollen beetles collected during 2001,04 from five different provinces of Sweden. Both susceptible and resistant insects were studied. Using one primer combination, more than 450 polymorphic DNA fragments were obtained and, in total, four primer combinations were used for analysis. A subsample of 59 single beetles was analysed using one primer combination. 3,AFLP profiles were analysed by similarity measures using the Nei and Li coefficient and Neighbour-joining dendrograms were generated. The dendrogram built using 133 samples showed three distinct groups, each containing beetles representing one generation. Statistical analysis using analysis of molecular variance of single beetle samples showed no evidence of significant genetic difference between resistant and susceptible beetles. Instead, a clear difference between samples, depending on time of collection and generation, was observed. 4,The expected regional population structure, although statistically significant, explained little of the variation. The levels of genetic variation within populations were very high. There appears to be a high rate of gene flow between pollen beetle populations. The implications of this in the context of insecticide resistance are discussed. [source]


The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era

MOLECULAR PLANT PATHOLOGY, Issue 3 2005
T. ROUXEL
SUMMARY Leptosphaeria maculans is the most ubiquitous pathogen of Brassica crops, and mainly oilseed brassicas (oilseed rape, canola), causing the devastating ,stem canker' or ,blackleg'. This review summarizes our current knowledge on the pathogen, from taxonomic issues to specific life traits. It mainly illustrates the importance of formal genetics approaches on the pathogen side to dissect the interaction with the host plants. In addition, this review presents the main current research topics on L. maculans and focuses on the L. maculans genome initiative recently begun, including its main research issues. Taxonomy:,Leptosphaeria maculans (Desm.) Ces. & de Not. (anamorph Phoma lingam Tode ex Fr.). Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes (Loculoascomycetes), Order Pleosporales, Genus Leptosphaeria, Species maculans. Host range:, cultivated Brassicas such as Brassica napus (oilseed rape, canola), B. rapa, B. juncea, B. oleracea, etc., along with numerous wild crucifers species. Arabidopsis thaliana was recently reported to be a potential host for L. maculans. Primary disease symptoms are greyish-green collapse of cotyledon or leaf tissue, without a visible margin, bearing tiny black spots (pycnidia). The fungus then develops an endophytic symptomless growth for many months. Secondary symptoms, at the end of the growing season, are dry necroses of the crown tissues with occasional blackening (stem canker or blackleg) causing lodging of the plants. Pseudothecia differentiate on leftover residues. Seedling damping-off and premature ripening are also reported under certain environmental conditions. Useful websites:,Leptosphaeria maculans sequencing project at Genoscope: http://www.genoscope.cns.fr/externe/English/Projets/Projet_DM/organisme_DM.html; the SECURE site: http://www.secure.rothamsted.ac.uk/ the ,Blackleg' group at the University of Melbourne: http://www.botany.unimelb.edu.au/blackleg/overview.htm [source]


A cytogenetic study of the progenies of hybrids between Brassica napus and Brassica oleracea, Brassica bourgeaui, Brassica cretica and Brassica montana

PLANT BREEDING, Issue 2 2002
N. InomataArticle first published online: 28 JUN 200
Abstract In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self-pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops. [source]


The future of IPM: whither or wither?

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2009
Myron P Zalucki
Abstract The acronym IPM (integrated pest management) has been around for over 50 years and now not only supposedly guides research and extension in pest management but also markets pesticides, is claimed to be undertaken by many growers, and even resonates with public perceptions and politicians. Whether or not IPM programs are sustainable in the longer term under the conflicting stresses and strains of the modern agricultural environment is debatable. We analyse three case studies of IPM development in Australia: citrus IPM in central Queensland, Brassica IPM in southeast Queensland and Helicoverpa management in cotton in eastern Australia. Many management practices for these pests have changed over time. In the more stable citrus system classical biological control along with changed practices (reduced pesticide use) have effectively controlled imported scale insect pests. In Brassicas and cotton, IPM is predominantly of the sample and spray variety where, increasingly, less broad-spectrum insecticides are used and, in cotton, Helicoverpa management includes the deployment of transgenic plants. We question whether or not IPM principles are always consistent with market forces and whether or not the approach is universally applicable for all pest insects when implemented at the small (field or farm) scale. Farmers will adopt cost-effective approaches that minimise their financial risks. For Australia as a whole over the last 30 years insecticide input costs per hectare have increased faster than the price index, reflecting more costly insecticides, changes to the combinations of crops grown and an increase in the overall area of crops cultivated together with possible concomitant changes in pest abundance. Any pest crisis will ensure rapid changes in practice and adoption of technologies, in order to mitigate the short-term financial stresses caused. However, regression to former practices tends to follow (e.g. in Brassica crops). In most cases, we cannot objectively test if changed management practices are responsible for changes in pest abundance, as is often claimed, or if the latter is simply a consequence of the weather and/or related large-scale landscape features (e.g. area of host plants). We argue that for many systems the future of pest management practice will require a change to landscape or area-wide approaches. We suspect, given how entrenched the acronym has become, whatever the nature of the approach it will be called IPM. [source]


Effect of day length on development and reproductive diapause in Nysius huttoni White (Heteroptera, Lygaeidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 8 2004
X. Z. He
Abstract:,Nysius huttoni White is endemic to New Zealand and an important pest of wheat and brassica crops. To provide critical information for pest forecast, management and quarantine inspection, we investigated the effect of day length on the growth, development and reproductive diapause of this pest under a series of photoperiodic regimes: 16 : 8, 14 : 10, 12 : 12 and 10 : 14 h [light : dark (L : D)]. Long day lengths [16 : 8 and 14 : 10 h (L : D)] promote a continuous lifecycle while short day lengths [12 : 12 and 10 : 14 h (L : D)] slow up the growth and development, prolong the pre-mating period, and induce the reproductive diapause. The absence of oviposition for approximately 30 days is recognized as the criterion for N. huttoni reproductive diapause definition. When all life stages are kept under the short day length conditions, only 60,73% of females enter reproductive diapause; if the exposure to short day lengths starts in late instar nymphs, 100% of females enter reproductive diapause. If only adults experience short day lengths, does diapause incidence fall in between, with up to 26% of females laying a few eggs before entering diapause. The critical photoperiod for the induction of reproductive diapause falls between 13.3 : 10.7 and 13.5 : 10.5 h. [source]


Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2008
Louise Kasprowicz
Abstract 1,The population of peach-potato aphid Myzus persicae in Scotland is comprised almost entirely of long-term asexual clones. 2,Over a ten year period, M. persicae from Scottish fields and suction traps were analysed with six microsatellite markers. 3,Out of 1497 individuals analysed, 14 clones (denoted A,N) comprised over 98% of the collection. 4,Some clones were particularly abundant but most clones had a widespread distribution on all available plants. 5,Clones E and L had distinct features in their distributions as clone L was geographically totally restricted to the north east of Scotland and clone E showed a marked preference for brassica crops. 6,Clones E and L provide direct evidence of a role for local adaptations in the distribution of M. persicae clones. [source]


WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed brassica crops

MOLECULAR PLANT PATHOLOGY, Issue 2 2010
MOHAMMAD HOSSEIN BORHAN
SUMMARY White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops. [source]