Brain Weight (brain + weight)

Distribution by Scientific Domains


Selected Abstracts


Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain

JOURNAL OF APPLIED TOXICOLOGY, Issue 3 2008
Vittorio Fattori
Abstract Exposure to ethanol during development induces severe brain damage, resulting in a number of CNS dysfunctions including microencephaly and mental retardation. Potential targets of ethanol-induced neurotoxicity include neurotrophic factors and their signal transduction pathways. In the present study, rat pups were given ethanol at the dose of 5 g kg,1 via gavage from postnatal day (PND) 5 to 8, and mRNA expression of nerve growth-factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophic factor-3 (NT-3) in the cerebral cortex was examined, with attention to signal transduction, on PND 8. The mRNA level of BDNF was decreased by ethanol while those of NGF or NT-3 were not changed. Brain weights were decreased and the levels of phospho-MAPK, phospho-p70S6K and phospho Akt were decreased while phosphor-PKC, and phospho-CREB remained unchanged. These results suggest that BDNF and its related signal pathways involving Akt, MAPK and p70S6K are potential targets of ethanol-induced developmental neurotoxicity. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Environmental complexity and central nervous system development and function

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2004
Mark H. Lewis
Abstract Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching, neurogenesis, gene expression, and improved learning and memory. Moreover, in animal models of CNS insult (e.g., gene deletion), a more complex environment has attenuated or prevented the sequelae of the insult. Of relevance is the prevention of seizures and attenuation of their neuropathological sequelae as a consequence of exposure to a more complex environment. Relatively little attention, however, has been given to the issue of sensitive periods associated with such effects, the relative importance of social versus inanimate stimulation, or the unique contribution of exercise. Our studies have examined the effects of environmental complexity on the development of the restricted, repetitive behavior commonly observed in individuals with autism. In this model, a more complex environment substantially attenuates the development of the spontaneous and persistent stereotypies observed in deer mice reared in standard laboratory cages. Our findings support a sensitive period for such effects and suggest that early enrichment may have persistent neuroprotective effects after the animal is returned to a standard cage environment. Attenuation or prevention of repetitive behavior by environmental complexity was associated with increased neuronal metabolic activity, increased dendritic spine density, and elevated neurotrophin (BDNF) levels in brain regions that are part of cortical,basal ganglia circuitry. These effects were not observed in limbic areas such as the hippocampus. MRDD Research Reviews 2004;10:91,95. © 2004 Wiley-Liss, Inc. [source]


Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2010
Wenni Tong
Abstract A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010 [source]


Advantages of mixed effects models over traditional ANOVA models in developmental studies: A worked example in a mouse model of fetal alcohol syndrome

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 7 2007
Patricia E. Wainwright
Abstract Developmental studies in animals often violate the assumption of statistical independence of observations due to the hierarchical nature of the data (i.e., pups cluster by litter, correlation of individual observations over time). Mixed effect modeling (MEM) provides a robust analytical approach for addressing problems associated with hierarchical data. This article compares the application of MEM to traditional ANOVA models within the context of a developmental study of prenatal ethanol exposure in mice. The results of the MEM analyses supported the ANOVA results in showing that a large proportion of the variability in both behavioral score and brain weight could be explained by ethanol. The MEM also identified that there were significant interactions between ethanol and litter size in relation to behavioral scores and brain weight. In addition, the longitudinal modeling approach using linear MEM allowed us to model for flexible weight gain over time, as well as to provide precise estimates of these effects, which would be difficult in repeated measures ANOVA. © 2007 Wiley Periodicals, Inc. Dev Psychobiol 49: 664,674, 2007. [source]


Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla)

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2008
Katarzyna Bartkowska
Abstract Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10,30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew (Sorex araneus) and pygmy shrew (S. minutus). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5-HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews. [source]


Early Postnatal Exposure to Alcohol Reduces the Number of Neurons in the Occipital but Not the Parietal Cortex of the Rat

ALCOHOLISM, Issue 4 2005
Sandra M. Mooney
Background: The rat brain undergoes a period of rapid growth in the early postnatal period. During this time, the neocortex seems to be vulnerable to ethanol injury. Subdivisions of the neocortex develop in a temporospatial gradient that is likely to determine their vulnerability to ethanol-induced damage and whether damage is permanent. Therefore, the authors investigated the effect of postnatal ethanol exposure on the neocortex and specific subregions at the cessation of exposure and in the mature brain. Methods: Four-day-old rat pups with intragastric cannulae were artificially reared from postnatal day (PN) 4 through PN9. Of 12 daily feeds, two consecutive feeds contained either ethanol (4.5 g/kg) or an isocaloric maltose/dextrin solution. On PN10 or PN115, animals were perfused intracardially, and the brains were removed. Stereological methods were used to determine the total number of neurons and glial cells in, and the volume of, the neocortex, the parietal cortex, and the occipital cortex. Results: Exposure to ethanol did not affect body or brain weight at PN10. In contrast, at PN115 forebrain weight was significantly lower in ethanol-exposed animals compared with control-treated animals. There was no effect of treatment on body weight at PN115. On PN10, neocortical volume was 15% smaller in the ethanol-exposed animals compared with controls, with no change in the total number of neurons or glial cells. Occipital cortical volume was reduced by 22% in the ethanol-exposed animals, with a significant deficit in the total number of neurons (ethanol-exposed, 2.62 × 106; gastrostomy control, 3.20 × 106). There was no effect of ethanol exposure on the total number of glial cells in the occipital cortex or on any parameter in the parietal cortex. There was also no significant effect of ethanol exposure on the occipital cortex on PN115. Conclusions: These findings provide support for the hypothesis that a specific area or cell population might be differentially vulnerable to ethanol exposure during the brain growth spurt and that cell deficits evident on PN10 may not be permanent. [source]


Antiquity of postreproductive life: Are there modern impacts on hunter-gatherer postreproductive life spans?

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 2 2002
Nicholas G. Blurton Jones
Female postreproductive life is a striking feature of human life history and there have been several recent attempts to account for its evolution. But archaeologists estimate that in the past, few individuals lived many postreproductive years. Is postreproductive life a phenotypic outcome of modern conditions, needing no evolutionary account? This article assesses effects of the modern world on hunter-gatherer adult mortality, with special reference to the Hadza. Evidence suggests that such effects are not sufficient to deny the existence of substantial life expectancy at the end of the childbearing career. Data from contemporary hunter-gatherers (Ache, !Kung, Hadza) match longevity extrapolated from regressions of lifespan on body and brain weight. Twenty or so vigorous years between the end of reproduction and the onset of significant senescence does require an explanation. Am. J. Hum. Biol. 14:184,205, 2002. © 2002 Wiley-Liss, Inc. [source]


Long-term effects of a midgestational asphyxial episode in the ovine fetus

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 10 2006
Amanda E. O'Connell
Abstract We and others have shown previously that fetuses at midgestation can survive 30 min of complete umbilical cord occlusion, although hydrops fetalis (or gross fetal edema) results. To investigate whether this hydrops resolves by late gestation and if there are any long-term consequences of the asphyxial insult on the heart and kidneys, eight fetuses were subjected to 30 min of complete umbilical cord occlusion at 0.6 gestation (90 days; term 150 days) and were compared to a sham group (n = 10). During the occlusion period, fetuses became severely hypoxemic, hypercapnemic, and acidotic, with both blood pressure and heart rate decreasing. Most variables had returned to normal by 2-hr recovery. At 129 ± 1 days of gestation, approximately 40 days post occlusion, some fetuses were still slightly hydropic as skin fold measurements were increased (P < 0.01), although fetal body weight was not different from the sham group. The two groups had similar heart and kidney weights, ventricular cardiac myocyte nucleation, and glomerular number. By contrast, brain weight was reduced by 37% (P < 0.001) and the cerebral lateral ventricles were grossly dilated. Lungs were 50% smaller than in sham fetuses (P < 0.001). Thus, the hydrops that develops at midgestation as a result of a severe asphyxial episode can, but does not always, fully resolve by late gestation. Also, while fetuses at midgestation can survive this asphyxial episode with no long-term impact in renal or cardiac size, nephron number, or cardiomyocyte nucleation, the brain and lungs are severely affected. Anat Rec Part A, 288A:1112,1120, 2006. © 2006 Wiley-Liss, Inc. [source]


Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2008
Nadia P. Belichenko
Abstract Rett syndrome (RTT) is caused by mutations in the X-linked gene MECP2. While patients with RTT show widespread changes in brain function, relatively few studies document changes in brain structure and none examine in detail whether mutations causing more severe clinical phenotypes are linked to more marked changes in brain structure. To study the influence of MeCP2-deficiency on the morphology of brain areas and axonal bundles, we carried out an extensive morphometric study of two Mecp2-mutant mouse models (Mecp2B and Mecp2J) of RTT. Compared to wildtype littermates, striking changes included reduced brain weight (,13% and ,9%) and the volumes of cortex (,11% and ,7%), hippocampus (both by ,8%), and cerebellum (,12% and 8%) in both mutant mice. At 3 weeks of age, most (24 of 47) morphological parameters were significantly altered in Mecp2B mice; fewer (18) were abnormal in Mecp2J mice. In Mecp2B mice, significantly lower values for cortical area were distributed along the rostrocaudal axis, and there was a reduced length of the olfactory bulb (,10%) and periaqueductal gray matter (,16%). In Mecp2J mice, while there was significant reduction in rostrocaudal length of cortex, this parameter was also abnormal in hippocampus (,10%), periaqueductal gray matter (,13%), fimbria (,18%), and anterior commissure (,10%). Our findings define patterns of Mecp2 mutation-induced changes in brain structure that are widespread and show that while some changes are present in both mutants, others are not. These observations provide the underpinning for studies to further define microarchitectural and physiological consequences of MECP2 deficiency. J. Comp. Neurol. 508:184,195, 2008. © 2008 Wiley-Liss, Inc. [source]


Critical analysis of potential body temperature confounders on neurochemical endpoints caused by direct dosing and maternal separation in neonatal mice: a study of bioallethrin and deltamethrin interactions with temperature on brain muscarinic receptors

JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2003
Jürgen Pauluhn
Abstract The present investigation was conducted to understand better possible confounding factors caused by direct dosing of neonatal mice during the pre-weaning developmental period. By direct dosing, pups might encounter thermal challenges when temporarily removed from their ,natural habitat'. Typically, this leads to a cold environment and food deprivation (impaired lactation) and modulation of the toxic potency of the substance administered. Growth retardation as a consequence of such behavioural changes in pups makes it increasingly difficult to differentiate specific from non-specific mechanisms. Neonatal NMRI mice were dosed daily by gavage (0.7 mg kg,1 body wt.) from postnatal day (PND) 10,16 with S -bioallethrin, deltamethrin or the vehicle. Then the pups, including their non-treated foster dams, were subjected temporarily for 6 h day to a hypo-, normo- or hyperthermic environment, which was followed by normal housing. The measured temperatures in the environmental chambers were ca. 21, 25 and 30°C, respectively. Thus, temperatures in the hypo- and normothermic groups are comparable to the temperatures commonly present in testing laboratories, whereas the hyperthermic condition is that temperature typically present in the ,natural habitat' of pups. A deviation from the normal behaviour of both pups and dams was observed in the hypo- and normothermic groups. In these groups the rectal temperatures of pups were markedly decreased, especially in the early phase of the study (PND 10,12). Neonates that received either test substance displayed changes in body weights and brain weights at terminal sacrifice (PND 17) when subjected temporarily to a non-physiological environment. An enormous influence of environmental temperature on the density of muscarinic receptors in the crude synaptosomal fraction of the cerebral cortex was ascertained. In summary, these results demonstrate that the direct dosing of thermolabile neonatal mice by gavage is subject to significant artefacts that render the interpretation of findings from such studies difficult. It appears that if direct dosing of neonatal pups is mandated, and inhalation is a relevant route of exposure, the combined inhalation exposure of dams with their litters is an alternative procedure that does not cause disruption of the ,natural habitat' of pups. However, owing to their higher ventilation, under such conditions the pups may receive dosages at least double those of the dams. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Insulin-like growth factor-I ameliorates demyelination induced by tumor necrosis factor-, in transgenic mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2007
Ping Ye
Abstract Our groups have reported that tumor necrosis factor-, (TNF-,) causes myelin damage and apoptosis of oligodendrocytes and their precursors in vitro and in vivo. We also have reported that insulin-like growth factor-I (IGF-I) can protect cultured oligodendrocytes and their precursors from TNF-,-induced damage. In this study, we investigated whether IGF-I can protect oligodendrocytes and myelination from TNF-,-induced damage in vivo by cross-breeding TNF-, transgenic (Tg) mice with IGF-I Tg mice that overexpress IGF-I exclusively in brain. At 8 weeks of age, compared with those of wild-type (WT) mice, the brain weights of TNF-, Tg mice were decreased by ,20%, and those of IGF-I Tg mice were increased by ,20%. The brain weights of mice that carry both TNF-, and IGF-I transgenes (TNF-,/IGF-I Tg mice) did not differ from those of WT mice. As judged by histochemical staining and immunostaining, myelin content in the cerebellum of TNF-,/IGF-I Tg mice was similar to that in WT mice and much more than that in TNF-, Tg mice. Consistently, Western immunoblot analysis showed that myelin basic protein (MBP) abundance in the cerebellum of TNF-,/IGF-I Tg mice was double that in TNF-, Tg mice. In comparison with WT mice, the number of oligodendrocytes was decreased by ,36% in TNF-, Tg mice, whereas it was increased in IGF-I Tg mice by ,40%. Oligodendrocyte number in TNF-,/IGF-I Tg mice was almost twice that in TNF-, Tg mice. Furthermore, IGF-I overexpression significantly reduced TNF-,-induced increases in apoptotic cell number, active caspase-3 abundance, and degradaion of MBP. Our results indicate that IGF-I is capable of protecting myelin and oligodendrocytes from TNF-,-induced damage in vivo. © 2007 Wiley-Liss, Inc. [source]