Brain Vesicles (brain + vesicle)

Distribution by Scientific Domains


Selected Abstracts


Misexpression of genes in brain vesicles by in ovo electroporation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2000
Harukazu Nakamura
Transfection to living chick embryos in ovo by electroporation has been recently developed. In this mini-review, misexpression in brain vesicles is introduced. To transfect, expression plasmid is inserted in the brain vesicle, and the square pulse of 25 V, 50 ms was charged five times. The translation product of the transfected gene is detected 2 h after electroporation, and reaches the peak at 24 h after electroporation. Transfection is so effective that this method is contributing greatly to the study of the molecular mechanisms of morphogenesis. [source]


Ci-GATAa, a GATA -class gene from the ascidian Ciona intestinalis: Isolation and developmental expression

DEVELOPMENTAL DYNAMICS, Issue 1 2003
Palmira D'Ambrosio
Abstract Members of the GATA family of zinc finger transcription factors have been shown to play important roles in controlling gene expression in a variety of cell types in many metazoan. Here, we describe the identification of Ci-GATAa, a member of this gene family, in the ascidian Ciona intestinalis. Whole-mount in situ hybridization showed that Ci-GATAa was expressed in a highly dynamic manner. The maternal transcript was evenly distributed in the embryo during early stages of development; however, the signal gradually decreased until it disappeared at the 64-cell stage. A zygotic transcript was detected at the 110-cell stage in the blastomeres precursors of three different tissues (brain vesicle, mesenchyme, and trunk lateral cells) and the signal was conserved in these territories up to the larval stage, indicating an important role for Ci-GATAa during ascidian differentiation. © 2002 Wiley-Liss, Inc. [source]


Origin of the Vertebrate Visual Cycle: III.

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2006
-Monooxygenase Homologues in Ciona intestinalis, -carotene 1, Distinct Distribution of RPE6
We previously identified three genes that encode putative visual cycle proteins that are homologues of retinal G-protein coupled receptor (Ci-opsin3), cellular retinaldehyde-binding protein (Ci-CRALBP) and ,-carotene 15,15,-monooxygenase (Ci-BCO) in the ascidian Ciona intestinalis. Ci-opsin3 and Ci-CRALBP are localized in both ocellus photoreceptor cells and surrounding non-photoreceptor cells in the brain vesicle of the larva. In the present study, we investigated the possible role and evolutionary origin of the BCO/RPE65 family in the visual cycle by analyzing Ci-BCO localization by immunohistochemistry and by identifying a novel gene that encodes a homologue of retinal pigment epithelium,specific 65 kDa protein (Ci-RPE65) in C. intestinalis. In situ hybridization and expressed sequence tag (EST) profiles consistently suggest that Ci-RPE65 is not significantly expressed in the ocellus and brain vesicle of the larva. Ci-RPE65 is expressed in the neural complex, a photoreceptor organ of the adult ascidian, at a level comparable to that of Ci-opsin3 and Ci-CRALBP. Ci-RPE65 is also expressed in various adult tissues, including the gill, body wall and intestine, suggesting that Ci-RPE65 plays a role in addition to that in the visual cycle. In contrast, Ci-BCO is predominantly localized in ocellus photoreceptor cells of the larva. The larval visual cycle seems to use Ci-opsin3 as a photoisomerase. Our results also suggest that the RPE65-dependent visual cycle is used in the adult photoreceptors of a primitive chordate. [source]


Misexpression of genes in brain vesicles by in ovo electroporation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2000
Harukazu Nakamura
Transfection to living chick embryos in ovo by electroporation has been recently developed. In this mini-review, misexpression in brain vesicles is introduced. To transfect, expression plasmid is inserted in the brain vesicle, and the square pulse of 25 V, 50 ms was charged five times. The translation product of the transfected gene is detected 2 h after electroporation, and reaches the peak at 24 h after electroporation. Transfection is so effective that this method is contributing greatly to the study of the molecular mechanisms of morphogenesis. [source]


Sonographic markers of exencephaly below 10 weeks' gestation

PRENATAL DIAGNOSIS, Issue 1 2005
R. A. Machado
Abstract We report two cases of exencephaly diagnosed by transvaginal ultrasonography at 8 weeks 4 days and at 9 weeks 3 days of gestation. Both cases presented an irregular cephalic pole, and, in the case seen at 8 weeks 4 days, brain vesicles were also absent, whereas in the case seen at 9 weeks 3 days, the midline echo was indistinguishable with disorganized choroid plexuses. In both cases, anencephaly was evident at 11 and 12 weeks' gestation and the postmortem confirmed the diagnosis. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Morpho-physical Recording of Bovine Conceptus (Bos indicus) and Placenta from Days 20 to 70 of Pregnancy

REPRODUCTION IN DOMESTIC ANIMALS, Issue 5 2010
AC Assis Neto
Contents The study is based on 141 pregnant Bos indicus cows, from days 20 to 70 post-insemination. First, special attention was given to the macroscopically observable phenomena of attachment of the conceptus to the uterus, i.e. the implantation, from about days 20 to 30 post-insemination up to day 70, and placentome development by growth, vascularization and increase in the number of cotyledons opposite to the endometrial caruncles. Secondly, as for the conceptuses, semiquantitative, statistical analyses were performed of the lengths of chorio-allantois, amnion and yolk sac; and the different parts of the centre and two extremes of the yolk sacs were also analysed. Thirdly, the embryos/foetuses corresponding to their membranes were measured by their greatest length and by weight, and described by the appearance of external developmental phenomena during the investigated period like neurulation, somites, branchial arcs, brain vesicles, limb buds, C-form, pigmented eye and facial grooves. In conclusion, all the data collected in this study from days 20 to 70 of bovine pregnancy were compared extensively with corresponding data of the literature. This resulted in an ,embryo/foetal age-scale', which has extended the data in the literature by covering the first 8 to 70 days of pregnancy. This age-scale of early bovine intrauterine development provides model for studies, even when using slaughtered cows without distinct knowledge of insemination or fertilization time, through macroscopic techniques. This distinctly facilitates research into the cow, which is now being widely used as ,an experimental animal' for testing new techniques of reproduction like in vitro fertilization, embryo transfer and cloning. [source]