| |||
Brain Tissue Samples (brain + tissue_sample)
Selected AbstractsMelatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptomsJOURNAL OF PINEAL RESEARCH, Issue 3 2009Mehmet Ersahin Abstract:, Oxidative stress has detrimental effects in several models of neurodegenerative diseases, including subarachnoid hemorrhage (SAH). This study investigated the putative neuroprotective effect of melatonin, a powerful antioxidant, in a rat model of SAH. Male Wistar albino rats were divided as control, vehicle-treated SAH, and melatonin-treated (10 mg/kg, i.p.) SAH groups. To induce SAH, 0.3 mL blood was injected into cisterna magna of rats. Forty-eight hours after SAH induction, neurological examination scores were measured and the rats were decapitated. Brain tissue samples were taken for blood,brain barrier (BBB) permeability, brain water content, histological examination, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+ -K+ -ATPase activities. Formation of reactive oxygen species in brain tissue samples was monitored by using a chemiluminescence (CL) technique. The neurological examination scores were increased in SAH groups on the second day of SAH induction and SAH caused a significant decrease in brain GSH content and Na+ -K+ -ATPase activity, which was accompanied with significant increases in CL, MDA levels, and MPO activity. On the other hand, melatonin treatment reversed all these biochemical indices as well as SAH-induced histopathological alterations, while increased brain water content and impaired BBB were also reversed by melatonin treatment. This study suggests that melatonin, which can easily cross BBB, alleviates SAH-induced oxidative stress and exerts neuroprotection by preserving BBB permeability and by reducing brain edema. [source] Expression and structure of interleukin 4 receptors in primary meningeal tumorsCANCER, Issue 10 2005Sachin Puri M.Sc. Abstract BACKGROUND It was reported previously that malignant human tumors, like glioma and medulloblastoma, express high-density interleukin (IL-4) receptor mRNA and protein. Because IL-4 receptors (R) are sensitive targets for targeted therapeutics, knowledge of the expression of these receptors in other central nervous system tumors is of great interest. In this study, the authors examined the expression and subunit composition of IL-4R complex in primary human meningiomas. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) analysis for IL-13R,1, IL-4R, and IL-2R,c was performed on total RNA extracted from 35 meningiomas and a normal human brain tissue sample. Results were confirmed in nine randomly selected tumors by quantitative real-time PCR and in situ immunofluorescence assay. RESULTS Transcripts for the IL-4R, and IL-13R,1 chains were overexpressed in meningiomas compared with normal brain tissue. The levels of IL-4R, mRNA appeared to be higher compared with the levels of IL-13R,1 mRNA. The results also showed that tumors with higher disease grade tended to have increased mRNA expression for the IL-4R, chain. This IL-4R, mRNA overexpression appeared to be more frequent in younger patients (age < 37 years). The transcripts for IL-2R,c chain were not detected in any of the tumor samples or in normal brain tissue. Quantitative real-time PCR confirmed the results of the RT-PCR analysis. Meningiomas also demonstrated a bright immunofluorescent staining for the IL-4R, and IL-13R,1 chains but no staining for IL-2R,c. CONCLUSIONS Expression of the IL-4R, and IL-13R,1 chains and absence of IL-2,c expression established that meningiomas expressed type II IL-4Rs. These receptors may serve as a target for cytotoxin/immunotoxin therapy in patients with meningioma who are not amenable to surgical resection or for recurrent tumors. Cancer 2005. © 2005 American Cancer Society. [source] Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunctionJOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2010M.L. Spatara Abstract In vivo aggregation of tau protein is a hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). Recent evidence has also demonstrated activation of the unfolded protein response (UPR), a cellular response to endoplasmic reticulum (ER) stress, in AD, although the role of the UPR in disease pathogenesis is not known. Here, three model systems were used to determine whether a direct mechanistic link could be demonstrated between tau aggregation and the UPR. The first model system used was SH-SY5Y cells, a neuronal cultured cell line that endogenously expresses tau. In this system, the UPR was activated using chemical stressors, tunicamycin and thapsigargin, but no changes in tau expression levels, solubility, or phosphorylation were observed. In the second model system, wild-type 4R tau and P301L tau, a variant with increased aggregation propensity, were heterologously overexpressed in HEK 293 cells. This overexpression did not activate the UPR. The last model system examined here was the PS19 transgenic mouse model. Although PS19 mice, which express the P301S variant of tau, display severe neurodegeneration and formation of tau aggregates, brain tissue samples did not show any activation of the UPR. Taken together, the results from these three model systems suggest that a direct mechanistic link does not exist between tau aggregation and the UPR. © 2010 Wiley-Liss, Inc. [source] Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptomsJOURNAL OF PINEAL RESEARCH, Issue 3 2009Mehmet Ersahin Abstract:, Oxidative stress has detrimental effects in several models of neurodegenerative diseases, including subarachnoid hemorrhage (SAH). This study investigated the putative neuroprotective effect of melatonin, a powerful antioxidant, in a rat model of SAH. Male Wistar albino rats were divided as control, vehicle-treated SAH, and melatonin-treated (10 mg/kg, i.p.) SAH groups. To induce SAH, 0.3 mL blood was injected into cisterna magna of rats. Forty-eight hours after SAH induction, neurological examination scores were measured and the rats were decapitated. Brain tissue samples were taken for blood,brain barrier (BBB) permeability, brain water content, histological examination, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+ -K+ -ATPase activities. Formation of reactive oxygen species in brain tissue samples was monitored by using a chemiluminescence (CL) technique. The neurological examination scores were increased in SAH groups on the second day of SAH induction and SAH caused a significant decrease in brain GSH content and Na+ -K+ -ATPase activity, which was accompanied with significant increases in CL, MDA levels, and MPO activity. On the other hand, melatonin treatment reversed all these biochemical indices as well as SAH-induced histopathological alterations, while increased brain water content and impaired BBB were also reversed by melatonin treatment. This study suggests that melatonin, which can easily cross BBB, alleviates SAH-induced oxidative stress and exerts neuroprotection by preserving BBB permeability and by reducing brain edema. [source] Diffusion tensor imaging in fixed brain tissue at 7.0 TNMR IN BIOMEDICINE, Issue 2 2003David N. Guilfoyle Abstract The purpose of this work is to assess the feasibility of performing quantitative in vitro brain tissue diffusion tensor imaging (DTI) measurements and to examine their comparability to in vivo measurements. DTI of fixed tissue at high field strength is potentially a very valuable investigative tool as very high spatial resolution can be achieved. DTI was applied to human and mouse brain fixed tissue samples as well as in vivo measurements of the mouse brain. T1 and T2 relaxography of the fixed tissue samples was also performed to provide further characterization of the tissue. All experiments were performed at 7,T. The fractional anisotropy (FA) of the human fixed brain tissue samples is found to be higher in the corpus callosum than in the occipital white matter region, consistent with in vivo measurements reported in the literature. Our FA measurements of the corpus callosum of a mouse brain are also found to be the same both in vitro and in vivo. This preliminary work supports the use of DTI in both fixed human and fixed animal brain tissue as a valid investigative tool. With the increased availability of brain banks in different brain disorders, DTI in fixed tissue may prove to be a very useful method for the study of white matter abnormalities. Copyright © 2003 John Wiley & Sons, Ltd. [source] Age and energy intake interact to modify cell stress pathways and stroke outcomeANNALS OF NEUROLOGY, Issue 1 2010Thiruma V. Arumugam PhD Objective Age and excessive energy intake/obesity are risk factors for cerebrovascular disease, but it is not known if and how these factors affect the extent of brain damage and outcome in ischemic stroke. We therefore determined the interactions of age and energy intake on the outcome of ischemic brain injury, and elucidated the underlying mechanisms. Methods We utilized a novel microchip-based immunoaffinity capillary electrophoresis technology to measure a panel of neurotrophic factors, cytokines, and cellular stress resistance proteins in brain tissue samples from young, middle-aged, and old mice that had been maintained on control or energy-restricted diets prior to middle cerebral artery occlusion and reperfusion. Results Mortality from focal ischemic stroke was increased with advancing age and reduced by an intermittent fasting (IF) diet. Brain damage and functional impairment were reduced by IF in young and middle-aged mice, but not in old mice. The basal and poststroke levels of neurotrophic factors (brain-derived neurotrophic factor and basic fibroblast growth factor), protein chaperones (heat shock protein 70 and glucose regulated protein 78), and the antioxidant enzyme heme oxygenase-1 were decreased, whereas levels of inflammatory cytokines were increased in the cerebral cortex and striatum of old mice compared with younger mice. IF coordinately increased levels of protective proteins and decreased inflammatory cytokines in young, but not in old mice. Interpretation Reduction in dietary energy intake differentially modulates neurotrophic and inflammatory pathways to protect neurons against ischemic injury, and these beneficial effects of IF are compromised during aging, resulting in increased brain damage and poorer functional outcome. ANN NEUROL 2010;67:41,52 [source] |