Brain Samples (brain + sample)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Vascular endothelial growth factor gene expression in middle cerebral artery occlusion in the rat

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2005
F. Lennmyr
Background:, Focal cerebral ischemia induces up-regulation of angiogenic growth factors such as vascular endothelial growth factor (VEGF), which may have both beneficial and harmful effects to the ischemic brain. Vascular endothelial growth factor is up-regulated in models of brain ischemia, but the underlying mechanisms in vivo remain unclear. In the present report we have investigated the concomitant changes in VEGF and glyceraldehyde dehydrogenase (GAPDH) mRNA expression in a model of permanent and transient cerebral ischemia. Methods:, Male Sprague-Dawley rats were exposed to permanent or transient (2 h) middle cerebral artery occlusion (PMCAO, TMCAO). Brain samples were collected at survival times ranging from 6 h to 1 week, and the levels of VEGF164 and GAPDH mRNA were determined using reverse-transcriptase real-time polymerase chain reaction (RT-PCR). Results:, The VEGF mRNA levels decreased gradually over the observation period in a similar manner in both PMCAO and TMCAO. Maximum levels, seen at early observation time points, did not significantly deviate from sham controls. No statistically significant changes in GAPDH mRNA levels were observed, but there was a tendency towards a postischemic decrease with subsequent return to control levels over time. The VEGF/GAPDH ratio followed a pattern of decrease similar to VEGF mRNA alone. Conclusion:, The VEGF mRNA levels at 6 h after MCAO remain near baseline and thereafter decline, regardless of whether the occlusion is permanent or transient (2 h). The findings raise the question of other than transcriptional regulation of VEGF in cerebral ischemia. [source]


Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications

MOVEMENT DISORDERS, Issue 3 2003
Frédéric Calon PhD
Abstract Brain samples from 14 Parkinson's disease patients, 10 of whom developed motor complications (dyskinesias and/or wearing-off) on dopaminomimetic therapy, and 11 controls were analyzed. Striatal 3,-(4- 125I-iodophenyl)tropane-2,-carboxylic acid isopropyl ester ([125I]RTI-121) -specific binding to dopamine transporter and concentration of dopamine were markedly decreased, but no association between level of denervation and development of motor complications was observed. The homovanillic acid/dopamine ratio of concentrations was higher in putamen of patients with wearing-off compared to those without. Striatal 35S-labeled t-butylbicyclophosphorothionate ([35S]TBPS) and [3H]flunitrazepam binding to GABAA receptors were unchanged in patients with Parkinson's disease, whereas [125I]CGP 64213 -specific binding to GABAB receptors was decreased in the putamen and external segment of the globus pallidus of parkinsonian patients compared with controls. [3H]Flunitrazepam binding was increased in the putamen of patients with wearing-off compared to those without. [35S]TBPS,specific binding was increased in the ventral internal globus pallidus of dyskinetic subjects. These data suggest altered dopamine metabolism and increased GABAA receptors in the putamen related to the pathophysiology of wearing-off. The present results also suggest that an up-regulation of GABAA receptors in the internal globus pallidus is linked to the pathogenesis of levodopa-induced dyskinesias. © 2002 Movement Disorder Society [source]


Effect Of Uranyl Nitrate-Induced Renal Failure On Morphine Disposition And Antinociceptive Response In Rats

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2000
Jacoba T Van Crugten
SUMMARY 1. The aims of the present study were to administer morphine (14.0 ,mol/kg, s.c.) to male Hooded Wistar rats and to determine the effect of uranyl nitrate-induced renal failure on: (i) the antinociceptive effect of morphine; (ii) the pharmacokinetics of morphine and morphine-3-glucuronide (M3G); and (iii) the relationship between antinociceptive effect and the pharmacokinetics of morphine in plasma and brain. 2. Renal failure was induced by a single s.c. injection of uranyl nitrate and kinetic/dynamic studies were performed 10 days after its administration, when creatinine clearance was 17% of the control group. Antinociceptive effect was measured by the tail-flick method at various times up to 2 h post-drug administration. Concentrations of morphine and M3G in plasma and brain and concentrations of creatinine in urine and serum were determined by specific HPLC methods. 3. After morphine administration, the area under the antinociceptive effect,time curve was decreased by 44% in renal failure rats. There were no differences between control and renal failure rats in: (i) plasma morphine concentration,time curves; (ii) brain morphine concentration,time curves; and (iii) plasma M3G concentration,time curves. Morphine-6-glucuronide was not detected in any plasma or brain sample from rats administered morphine and no M3G was detected in brain. 4. For both control and renal failure rats, the relationships between antinociceptive effect and plasma morphine concentration were characterized by counterclockwise hysteresis loops, probably reflecting a delay for the relatively polar morphine to cross the blood,brain barrier. The relationship between antinociceptive effect and brain morphine concentration in control rats revealed no evidence of acute tolerance and was described by a sigmoidal function. In contrast, the relationship in renal failure rats was characterized by clockwise hysteresis, which is consistent with acute tolerance development. [source]


Mass spectrometrical analysis of the mitochondrial carrier Aralar1 from mouse hippocampus

ELECTROPHORESIS, Issue 11 2010
Seok Heo
Abstract Aralar1 is a mitochondrial aspartate/glutamate carrier and a key component of the malate,aspartate NADH shuttle system. An analytical approach to obtain high sequence coverage is important to predict conformation, identify splice variants and binding partners or generate specific antibodies. Moreover, a method allowing determination of Aralar1 from brain samples is a prerequisite for evaluating a biological role. Sucrose gradient ultracentrifugation was applied to enrich native membrane protein fractions and these were run on blue-native PAGE, followed by multidimensional gel electrophoresis. Spots from the third-dimensional gel electrophoresis were in-gel digested with trypsin, chymotrypsin and subtilisin. Subsequently, peptides were analyzed by nano-ESI-LC-MS/MS using collision-induced dissociation and electron transfer dissociation modes. ModiroÔ v1.1 along with Mascot v2.2 software was used for data handling. Aralar1 could be clearly separated, unambiguously identified and characterized from protein extracts of mouse hippocampus by the use of the multidimensional gel electrophoretic steps. The combined sequence coverage of Aralar1 from trypsin, chymotrypsin and subtilisin digestions was 99.85%. The results provide the basis for future studies of Aralar1 at the protein chemical rather than at the immunochemical level in the brain and thus challenge and enable determination of Aralar1 levels required for understanding biological functions in health and disease. [source]


Microscale fractionation facilitates detection of differentially expressed proteins in Alzheimer's disease brain samples (vol. 25, Issue 15, pp.

ELECTROPHORESIS, Issue 18-19 2004
2557-2563)
See original http://dx.doi.org/10.1002/elps.200406011 [source]


A Kindling Model of Pharmacoresistant Temporal Lobe Epilepsy in Sprague,Dawley Rats Induced by Coriaria Lactone and Its Possible Mechanism

EPILEPSIA, Issue 4 2003
Ying Wang
Summary: ,Purpose: The aim of this study was to develop a new animal model of pharmacoresistant temporal lobe epilepsy (TLE) by repeated intramuscular injection of Coriaria lactone (CL) at subthreshold dosages and to explore the mechanisms that might be involved. Methods: Healthy male Sprague,Dawley rats (n = 160) were randomized into four groups during the kindling process: three groups (n = 50 for each group) received CL injection at subthreshold dosages (1.25, 1.5, and 1.75 mg/kg, respectively), and ten received normal saline (NS) injection as a control group. The maximal human adult dosage of carbamazepine (CBZ), valproate (VPA), and phenytoin (PHT) was administered as monotherapy to different groups of kindled rats for 1 month (n = 20 for each group). Changes in EEG recording, seizure number, intensity (expressed as grade 1,5 according to Racine stage), and duration, including spontaneous seizures during different interventions, were compared. The expression of P-170, a multiple drug resistance gene (MDR1) encoding P-glycoprotein, was measured in brain samples from different groups of experimental rats by using an image analysis and measurement system (ImagePro-Plus 4.0). Results: A total of 70 (46.7%) rats were fully kindled with a median of 15 (seven to 20) CL injections. Electrocorticogram (ECoG) including hippocampal (EHG) monitoring revealed the temporal lobe origins of epileptiform potentials, which were consistent with the behavioral changes observed. Spontaneous seizures occurred with frequency and diurnal patterns similar to those of human TLE. The antiepileptic drugs (AEDs) tested lacked a satisfactory seizure control. The maximal P-170 expression was in the kindled rats with AED treatment; the next highest was in the kindled rats without AED intervention. Nonkindled SD rats with CL injection also had increased P-170 expression compared with control SD rats. Conclusions: The study provided a simple and stable animal TLE kindling model with pharmacoresistant properties. The pharmacoresistance observed in the kindled rats to CBZ, VPA, and PHT at maximal human adult dosages together with the increased P-170 expression was a distinct feature of this model. This model might be used in further investigations of the mechanisms involved in pharmacoresistant TLE and for developing new AEDs. [source]


Lamotrigine pharmacokinetic/pharmacodynamic modelling in rats

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2005
M.M. Castel-Branco
Abstract The aim of this study was to perform a pharmacokinetic/pharmacodynamic (PK/PD) modelling of lamotrigine following its acute administration to rats. Adult male Wistar rats were given 10 mg/kg of lamotrigine intraperitoneally. Plasma and brain samples were obtained at predetermined times over 120 h post-dose and analysed by liquid chromatography. The anticonvulsant profile against maximal electroshock seizure stimulation was determined over 48 h after dosing. As a linear relationship between lamotrigine plasma and brain profiles was observed, only the plasma data set was used to establish the PK/PD relationship. To fit the effect,time course of lamotrigine, the PK/PD simultaneous fitting link model was used: the pharmacokinetic parameters and dosing information were used in the one-compartment first-order model to predict concentrations, which were then used to model the pharmacodynamic data with the sigmoid Emax model, in order to estimate all the parameters simultaneously. The following parameters were obtained: Vd = 2.00 L/kg, kabs = 8.50 h,1, kel = 0.025 h,1, ke0 = 3.75 h,1, Emax = 100.0% (fixed), EC50 = 3.44 mg/L and , = 8.64. From these results, it can be stated that lamotrigine is extensively distributed through the body, its plasma elimination half-life is around 28 h and a lamotrigine plasma concentration of 3.44 mg/L is enough to protect 50% of the animals. When compared with humans, the plasma concentrations achieved with this dose were within the therapeutic concentration range that had been proposed for epileptic patients. With the present PK/PD modelling it was possible to fit simultaneously the time-courses of the plasma levels and the anticonvulsant effect of lamotrigine, providing information not only about the pharmacokinetics of lamotrigine in the rat but also about its anticonvulsant response over time. As this approach can be easily applied to other drugs, it becomes a useful tool for an explanatory comparison between lamotrigine and other antiepileptic drugs. [source]


Identification and characterization of PEBP as a calpain substrate

JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
Qinghua Chen
Abstract Calpains are calcium- and thiol-dependent proteases whose dysregulation has been implicated in a number of diseases and conditions such as cardiovascular dysfunction, ischemic stroke, and Alzheimer's disease (AD). While the effects of calpain activity are evident, the precise mechanism(s) by which dysregulated calpain activity results in cellular degeneration are less clear. In order to determine the impact of calpain activity, there is a need to identify the range of specific calpain substrates. Using an in vitro proteomics approach we confirmed that phosphatidylethanolamine-binding protein (PEBP) as a novel in vitro and in situ calpain substrate. We also observed PEBP proteolysis in a model of brain injury in which calpain is clearly activated. In addition, with evidence of calpain dysregulation in AD, we quantitated protein levels of PEBP in postmortem brain samples from the hippocampus of AD and age-matched controls and found that PEBP levels were approximately 20% greater in AD. Finally, with previous evidence that PEBP may act as a serine protease inhibitor, we tested PEBP as an inhibitor of the proteasome and found that PEBP inhibited the chymostrypsin-like activity of the proteasome by ,30%. Together these data identify PEBP as a potential in vivo calpain substrate and indicate that increased PEBP levels may contribute to impaired proteasome function. [source]


The solubility of ,-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson's disease

JOURNAL OF NEUROCHEMISTRY, Issue 1 2001
Bruce C. V. Campbell
Intracellular inclusions containing ,-synuclein (,SN) are pathognomonic features of several neurodegenerative disorders. Inclusions occur in oligodendrocytes in multiple system atrophy (MSA) and in neurons in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). In order to identify disease-associated changes of ,SN, this study compared the levels, solubility and molecular weight species of ,SN in brain homogenates from MSA, DLB, PD and normal aged controls. In DLB and PD, substantial amounts of detergent-soluble and detergent-insoluble ,SN were detected compared with controls in grey matter homogenate. Compared with controls, MSA cases had significantly higher levels of ,SN in the detergent-soluble fraction of brain samples from pons and white matter but detergent-insoluble ,SN was not detected. There was an inverse correlation between buffered saline-soluble and detergent-soluble levels of ,SN in individual MSA cases suggesting a transition towards insolubility in disease. The differences in solubility of ,SN between grey and white matter in disease may result from different processing of ,SN in neurons compared with oligodendrocytes. Highly insoluble ,SN is not involved in the pathogenesis of MSA. It is therefore possible that buffered saline-soluble or detergent-soluble forms of ,SN are involved in the pathogenesis of other ,SN-related diseases. [source]


Oxidative Stress Following Traumatic Brain Injury in Rats

JOURNAL OF NEUROCHEMISTRY, Issue 5 2000
Detection of Free Radical Intermediates, Quantitation of Biomarkers
Abstract: Oxidative stress may contribute to many pathophysiologic changes that occur after traumatic brain injury. In the current study, contemporary methods of detecting oxidative stress were used in a rodent model of traumatic brain injury. The level of the stable product derived from peroxidation of arachidonyl residues in phospholipids, 8- epi -prostaglandin F2,, was increased at 6 and 24 h after traumatic brain injury. Furthermore, relative amounts of fluorescent end products of lipid peroxidation in brain extracts were increased at 6 and 24 h after trauma compared with sham-operated controls. The total antioxidant reserves of brain homogenates and water-soluble antioxidant reserves as well as tissue concentrations of ascorbate, GSH, and protein sulfhydryls were reduced after traumatic brain injury. A selective inhibitor of cyclooxygenase-2, SC 58125, prevented depletion of ascorbate and thiols, the two major water-soluble antioxidants in traumatized brain. Electron paramagnetic resonance (EPR) spectroscopy of rat cortex homogenates failed to detect any radical adducts with a spin trap, 5,5-dimethyl-1-pyrroline N -oxide, but did detect ascorbate radical signals. The ascorbate radical EPR signals increased in brain homogenates derived from traumatized brain samples compared with sham-operated controls. These results along with detailed model experiments in vitro indicate that ascorbate is a major antioxidant in brain and that the EPR assay of ascorbate radicals may be used to monitor production of free radicals in brain tissue after traumatic brain injury. [source]


Reduced expression of MAb6B4 epitopes on chondroitin sulfate proteoglycan aggrecan in perineuronal nets from cerebral cortices of SAMP10 mice: A model for age-dependent neurodegeneration

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2008
Yuko Saitoh
Abstract The accelerated senescence-prone SAMP10 mouse strain is a model for age-dependent neurodegeneration and is characterized by brain atrophy and deficits in learning and memory. Because perineuronal nets play an important role in the synaptic plasticity of adult brains, we examined the distributions of molecules that constitute perineuronal nets in SAMP10 mouse brain samples and compared them with those in control SAMR1 mouse samples. Proteoglycan-related monoclonal antibody 6B4 (MAb6B4) clearly immunostained perineuronal nets in SAMR1 mice cortices, but the corresponding immunostaining in SAMP10 mice was very faint. MAb6B4 recognizes phosphacan/PTP, in immature brains. However, this antibody recognized several protein bands, including a 400-kDa core glycoprotein from chondroitin sulfate proteoglycan in homogenates of mature cortices from SAMR1 mice. The 400-kDa band was also recognized by antiaggrecan antibodies. The aggrecan core glycoprotein band was also detectable in samples from SAMP10 mice, but this glycoprotein was faintly immunostained by MAb6B4. Because MAb6B4 recognized the same set of protein bands that the monoclonal antibody Cat-315 recognized in mature cerebral cortices of SAMR1 mice, the MAb6B4 epitope appears to be closely related to that of Cat-315 and presumably represents a novel type of oligosaccharide that attaches to aggrecans. The Cat-315 epitope colocalized with aggrecan in perineuronal nets from SAMR1 mouse brain samples, whereas its expression was prominently reduced in SAMP10 mouse brain samples. The biological significance of the MAb6B4/Cat-315 epitope in brain function and its relationship to the neurodegeneration and learning disabilities observed in SAMP10 mice remain to be elucidated. © 2007 Wiley-Liss, Inc. [source]


A Critical Evaluation of Influence of Ethanol and Diet on Salsolinol Enantiomers in Humans and Rats

ALCOHOLISM, Issue 2 2010
Jeongrim Lee
Background:, (R/S)-Salsolinol (SAL), a condensation product of dopamine (DA) with acetaldehyde, has been speculated to have a role in the etiology of alcoholism. Earlier studies have shown the presence of SAL in biological fluids and postmortem brains from both alcoholics and nonalcoholics. However, the involvement of SAL in alcoholism has been controversial over several decades, since the reported SAL levels and their changes after ethanol exposure were not consistent, possibly due to inadequate analytical procedures and confounding factors such as diet and genetic predisposition. Using a newly developed mass spectrometric method to analyze SAL stereoisomers, we evaluated the contribution of ethanol, diet, and genetic background to SAL levels as well as its enantiomeric distribution. Methods:, Simultaneous measurement of SAL enantiomers and DA were achieved by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Plasma samples were collected from human subjects before and after banana (a food rich in SAL) intake, and during ethanol infusion. Rat plasma and brain samples were collected at various time points after the administration of SAL or banana by gavage. The brain parts including nucleus accumbens (NAC) and striatum (STR) were obtained from alcohol-non-preferring (NP) or alcohol-preferring (P) rats as well as P-rats which had a free access to ethanol (P-EtOH). Results:, Plasma SAL levels were increased significantly after banana intake in humans. Consistently, administration of banana to rats also resulted in a drastic increase of plasma SAL levels, whereas brain SAL levels remained unaltered. Acute ethanol infusion did not change SAL levels or R/S ratio in plasma from healthy humans. The levels of both SAL isomers and DA were significantly lower in the NAC of P rats in comparison to NP rats. The SAL levels in NAC of P rats remained unchanged after chronic free-choice ethanol drinking. There were decreasing trends of SAL in STR and DA in both brain regions. No changes in enantiomeric ratio were observed after acute or chronic ethanol exposure. Conclusions:, SAL from dietary sources is the major contributor to plasma SAL levels. No significant changes of SAL plasma levels or enantiomeric distribution after acute or chronic ethanol exposure suggest that SAL may not be a biomarker for ethanol drinking. Significantly lower SAL and DA levels observed in NAC of P rats may be associated with innate alcohol preference. [source]


Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-,(42) peptide in vascular dementia

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2006
H. Lewis
Clinicopathological observations suggest there is considerable overlap between vascular dementia (VaD) and Alzheimer's disease (AD). We used immunochemical methods to compare quantities of amyloid-, (A,) peptides in post mortem brain samples from VaD, AD subjects and nondemented ageing controls. Total A, peptides extracted from temporal and frontal cortices were quantified using a previously characterized sensitive homogenous time-resolved fluorescence (HTRF) assay. The HTRF assays and immunocapture mass spectrometric analyses revealed that the A,(42) species were by far the predominant form of extractable peptide compared with A,(40) peptide in VaD brains. The strong signal intensity for the peak representing A,(4,42) peptide confirmed that these N-terminally truncated species are relatively abundant. Absolute quantification by HTRF assay showed that the mean amount of total A,(42) recovered from VaD samples was approximately 50% of that in AD, and twice that in the age-matched controls. Linear correlation analysis further revealed an increased accumulation with age of both A, peptides in brains of VaD subjects and controls. Interestingly, VaD patients surviving beyond 80 years of age exhibited comparable A,(42) concentrations with those in AD in the temporal cortex. Our findings suggest that brain A, accumulates increasingly with age in VaD subjects more so than in elderly without cerebrovascular disease and support the notion that they acquire Alzheimer-like pathology in older age. [source]


Selective PrP-like protein, doppel immunoreactivity in dystrophic neurites of senile plaques in Alzheimer's disease

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2004
I. Ferrer
Doppel (Dpl) is a prion-like protein encoded by the gene PRND, which has been found downstream of the prion gene PRNP in several species. The present study examines by immunohistochemistry Dpl expression in brain samples from 10 patients with Alzheimer's disease (AD), three patients with Pick's disease, four patients with Parkinson's disease, eight patients with diffuse Lewy body disease (DLBD), six patients with sporadic Creutzfeldt,Jakob disease (CJD) methionine/methionine at the codon 129, two patients with sporadic CJD methionine/valine at the codon 129 and numerous kuru plaques in the cerebellum, one patient with fatal familial insomnia (FFI), and 10 age-matched controls. In the adult human brain, Dpl immunoreactivity was restricted to scattered granule cells of the cerebellum and scattered small granules in the cerebral cortex. Dpl immunoreactivity was seen around ,A4 amyloid deposits in neuritic plaques, but not in diffuse plaques, AD and the common form of DLBD. Neurofibrillary tangles, Pick bodies and Lewy bodies were not stained with anti-Dpl antibodies. No modifications in Dpl immunoreactivity were observed in CJD excepting those associated with accompanying senile plaques. No Dpl-positive deposits were seen in FFI. Whether Dpl in neuritic plaques may attenuate amyloid-induced oxidative stress and participate in the glial response around amyloid cores is discussed in light of the few available data on Dpl functions. [source]


Fluorescence Lifetime Spectroscopy of Glioblastoma Multiforme,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2004
Laura Marcu
ABSTRACT Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. We investigated the use of time-resolved, laser-induced fluorescence spectroscopy for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas. The fluorescence of human brain samples (glioblastoma multiforme, cortex and white matter: six patients, 23 sites) was induced ex vivo with a pulsed nitrogen laser (337 nm, 3 ns). The time-resolved spectra were detected in a 360,550 nm wavelength range using a fast digitizer and gated detection. Parameters derived from both the spectral- (intensities from narrow spectral bands) and the time domain (average lifetime) measured at 390 and 460 nm were used for tissue characterization. We determined that high-grade gliomas are characterized by fluorescence lifetimes that varied with the emission wavelength (>3 ns at 390 nm, <1 ns at 460 nm) and their emission is overall longer than that of normal brain tissue. Our study demonstrates that the use of fluorescence lifetime not only improves the specificity of fluorescence measurements but also allows a more robust evaluation of data collected from brain tissue. Combined information from both the spectraland the time domain can enhance the ability of fluorescencebased techniques to diagnose and detect brain tumor margins intraoperatively. [source]


The power of cooperative investigation: Summary and comparison of the HUPO Brain Proteome Project pilot study results

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2006
Kai A. Reidegeld
Abstract Within the pilot phase of the HUPO Brain Proteome Project, nine participating laboratories analysed human (epilepsy and/or post mortem material) and mouse brain samples (embryonic, juvenile and adult), respectively, using a variety of different state of the art techniques. Thirty-seven different analytical approaches were accomplished. Of these analyses, 17 were done differentially, i.e. the protein expression patterns of the different samples (human or mouse) were compared. A catalogue of all proteins present in the respective sample was built in 20 analyses (mapping). All data were collected in the Data Collection Center in Bochum, Germany, and were reprocessed according to thoroughly defined parameters. In this report, a summary of all results and inter-laboratory comparisons with respect to the number of identified proteins, the analysed organism, and the used techniques is presented. [source]


Investigation of the potential pharmacokinetic and pharmaco-dynamic drug interaction between AHN 1-055, a potent benztropine analog used for cocaine abuse, and cocaine after dosing in rats using intracerebral microdialysis

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 5 2006
Sangeeta Raje
Abstract Purpose. AHN 1-055, a benztropine (BZT) analog, binds with high affinity to the dopamine transporter (DAT), possesses behavioral, pharmacokinetic (PK) and brain microdialysate dopamine (DA) profiles distinct from cocaine. Accordingly, the objectives of this study were to evaluate the pharmacokinetics and dopamine release of AHN 1-055, in the presence of cocaine. Methods. Male Sprague Dawley rats (,300 g) were administered 5 mg/kg of AHN 1-055 and cocaine i.v. and blood and brain samples were collected over 36 h. In addition, dialysis probes were stereotaxically implanted into the nucleus accumbens and extracellular fluid (ECF) DA levels were measured. PK and PD models were used to describe the relationship between the AHN 1-055, cocaine and DA levels. Results. No significant (p<0.05) differences were found in the PK parameters of AHN 1-055 alone (Vdss=18.7 l/kg, Cl=1.8 l/h/kg and t1/2=7.69 h) or AHN 1-055 with cocaine (Vdss=17.4 l/kg, Cl=1.9 l/h/kg and t1/2=6.82 h). The brain-to-plasma (B/P) ratios (B/PAHN 1,055=4.8 vs B/Pwith cocaine=4.4) and half-lives (t1/2(AHN 1,055)=6.2 h vs t1/2(cocaine)=5.6 h for AHN 1-055 alone and with cocaine were comparable. AHN 1-055 DA profiles were significantly different after co-administration with cocaine. There were no differences in the IC50 for AHN 1-055, with cocaine, however, the IC50 for cocaine was significantly reduced with AHN 1-055. Conclusions. The PK parameters of AHN 1-055 were not changed, however, the effect on DA levels was affected when cocaine was administered with AHNDA profile is affected when dosed with cocaine. This latter effect is a desirable attribute in the development of a medication as a potential substitute therapeutic medication for the treatment of cocaine abuse. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Effect of dose and input rate on the brain penetration of BMS-204352 following intravenous administration to rats

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 6 2002
Rajesh Krishna
Abstract BMS-204352 is a novel maxi-K channel opener that is being developed for the treatment for stroke. The current study was designed to evaluate the plasma and brain pharmacokinetics of BMS-204352 in rats, in particular, assessing the effect of dose and input rate on brain penetration of BMS-204352. Rats (3 animals/group/time point) received a single intravenous dose of BMS-204352 as 5 mg/kg bolus, 5 mg/kg 30 min infusion, 5 mg/kg 60 min infusion, and 10 mg/kg bolus dose, into the jugular vein. Terminal blood (for plasma) and brain samples were collected for up to 9 h post-dose and samples were analyzed for the concentrations of intact BMS-204352 using a validated liquid chromatographic tandem mass spectrometric method (LC/MS/MS). As dose increased from 5 to 10 mg/kg, both BMS-204352 Cmax and AUC values increased in plasma and brain, somewhat greater in proportion to the increment in dose. Whereas the peak concentrations of BMS-204352 were affected by infusion time, overall AUCs were comparable across the bolus and infusion groups. Terminal disposition (T -half ranged from 1.6 to 2.7 h) of BMS-204352 was unaltered as a function of input rate. BMS-204352 crossed the blood,brain barrier with brain-to-plasma (B/P) ratios of approximately 7,11. Brain-to-plasma ratios appeared to be independent of dose and infusions produced somewhat higher brain penetration (B/P of ca. 11) as compared to bolus (B/P of ca. 7,8) dose. The decline of BMS-204352 in the brain paralleled that of plasma independent of the input rate and dose. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism

ACTA NEUROLOGICA SCANDINAVICA, Issue 2 2010
Y. A. Lawrence
Lawrence YA, Kemper TL, Bauman ML, Blatt GJ. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol Scand: 2010: 121: 99,108. © 2009 The Authors Journal compilation © 2009 Blackwell Munksgaard. Background ,, There has been a long-standing interest in the possible role of the hippocampus in autism and both postmortem brain and neuroimaging studies have documented varying abnormalities in this limbic system structure. Aims ,, This study investigates the density of subsets of hippocampal interneurons, immunostained with the calcium binding proteins, calbindin (CB), calretinin (CR) and parvalbumin (PV) to determine whether specific subpopulations of interneurons are impacted in autism. Materials and methods ,, Unbiased stereological techniques were used to quantify the neuronal density of these immunoreactive subpopulations of gamma-aminobutyric acid-ergic (GABAergic) interneurons analyzed in the CA and subicular fields in postmortem brain material obtained from five autistic and five age-, gender- and postmortem interval-matched control cases. Results ,, Results indicate a selective increase in the density of CB-immunoreactive interneurons in the dentate gyrus, an increase in CR-immunoreactive interneurons in area CA1, and an increase in PV-immunoreactive interneurons in areas CA1 and CA3 in the hippocampus of individuals with autism when compared with controls. Discussion/conclusions ,, Although our sample size is small, these findings suggest that GABAergic interneurons may represent a vulnerable target in the brains of individuals with autism, potentially impacting upon their key role in learning and information processing. These preliminary findings further suggest the need for future more expanded studies in a larger number of postmortem brain samples from cases of autism and controls. [source]