Brain Repair (brain + repair)

Distribution by Scientific Domains


Selected Abstracts


Brain Damage, Brain Repair

EUROPEAN JOURNAL OF NEUROLOGY, Issue 3 2003
K. A. Jellinger
No abstract is available for this article. [source]


Lesion-induced neurogenesis in the hypothalamus is involved in behavioral recovery in adult ring doves

DEVELOPMENTAL NEUROBIOLOGY, Issue 6 2006
Gang Chen
Abstract Although neurogenesis in the brain of adult vertebrates is region dependent, lesion induces generation of new neurons in non-neurogenic brain regions. These findings raise the question of the role of new neurons in brain repair and functional recovery. We addressed this question by applying previous observations that electrolytic lesion induced neurogenesis in the ventromedial nucleus (VMN) of the hypothalamus in adult ring doves. Such lesions disrupted the male's courtship behavior, which could be reinstated after rehabilitation with a female. We investigated whether lesion-induced newborn neurons in the VMN facilitate the recovery of courtship behavior in the lesioned birds. We conducted systematic observations of cytological, morphological, and neuroanatomical changes in the lesioned VMN, and concurrently we monitored behavioral changes. Using a multitude of specific cell markers, we found a well-circumscribed cellular zone that proliferated actively. This highly proliferative zone initially appeared along the periphery of the lesion site, where cells had high levels of expression of neuronal, glial, and neurovascular markers. As newborn neurons matured at the lesion site, the necrosis gradually decreased, whereas a downsized proliferative zone relocated to a region ventral to the VMN. Some of the mature neurons were found to project to the midbrain vocal nuclei. Restoration of these projection neurons coincided with the recovery of courtship vocalization. Finally, we found that a social factor, that is, when the male doves were cohoused with a mate, facilitated neurogenesis and behavioral recovery. These results suggest that lesion-induced neurogenesis contributes to behavioral recovery in adult animals. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Potential of umbilical cord blood cells for brain repair

JOURNAL OF NEUROCHEMISTRY, Issue 2002
P. R. Sanberg
Our laboratory is characterizing the mononuclear cells from human umbilical cord blood (HUCB) for possible therapeutic value. Studies on HUCB cells demonstrated their ability to respond to growth factors by increased expression of neural markers and down regulation of several genes associated with development of blood lines. HUCB cells were also transplanted into the subventricular zone of the developing rat brain. It was found that some of the HUCB cells responded to external factors and were able to adopt neural fates similar to endogenous stem cells. We also tested whether intravenously infused HUCB cells enter brain, survive, differentiate and improve neurological functional recovery after stroke or traumatic brain injury (TBI) in rats. HUCB cells were injected into the tail vein at least 24 h after stroke or TBI. Behavioral impairments were significantly improved as early as 14 days in both TBI and stroke animals, compared to controls. Injected cells entered brain and migrated into the parenchyma of the injured brain. Some of these expressed neuronal, astrocytic, or endothelial markers. Our data suggest that intravenous administration of HUCB cells can provide neural stem cells, and may be a useful treatment for brain repair. Acknowledgements:, Supported by Saneron CCEL Therapeutics, Inc. and a FL Hi-Tech Corridor Grant. [source]


Human neural stem cells genetically modified for brain repair in neurological disorders

NEUROPATHOLOGY, Issue 3 2004
Seung U. Kim
Existence of multipotent neural stem cells (NSC) has been known in developing or adult mammalian CNS, including humans. NSC have the capacity to grow indefinitely and have multipotent potential to differentiate into three major cell types of CNS, neurons, astrocytes and oligodendrocytes. Stable clonal lines of human NSC have recently been generated from the human fetal telencephalon using a retroviral vector encoding v-myc. One of the NSC lines, HB1.F3, carries normal human karyotype of 46XX and has the ability to self-renew, differentiate into cells of neuronal and glial lineages, and integrate into the damaged CNS loci upon transplantation into the brain of animal models of Parkinson disease, HD, stroke and mucopolysaccharidosis. F3 human NSC were genetically engineered to produce L-dihydroxyphenylalanine (L-DOPA) by double transfection with cDNA for tyrosine hydroxylase and guanosine triphosphate cylohydrolase-1, and transplantation of these cells in the brain of Parkinson disease model rats led to L-DOPA production and functional recovery. Proactively transplanted F3 human NSC in rat striatum, supported the survival of host striatal neurons against neuronal injury caused by 3-nitropro-pionic acid in rat model of HD. Intravenously introduced through the tail vein, F3 human NSC were found to migrate into ischemic lesion sites, differentiate into neurons and glial cells, and improve functional deficits in rat stroke models. These results indicate that human NSC should be an ideal vehicle for cell replacement and gene transfer therapy for patients with neurological diseases. In addition to immortalized human NSC, immortalized human bone marrow mesenchymal stem cell lines have been generated from human embryonic bone marrow tissues with retroviral vectors encording v-myc or teromerase gene. These immortalized cell lines of human bone marrow mesenchymal stem cells differentiated into neurons/glial cells, bone, cartilage and adipose tissue when they were grown in selective inducing media. There is further need for investigation into the neurogenic potential of the human bone marrow stem cell lines and their utility in animal models of neurological diseases. [source]


Brain self-repair in psychotherapy: Implications for education

NEW DIRECTIONS FOR ADULT & CONTINUING EDUCATION, Issue 110 2006
Colin A. Ross
The educational process called psychotherapy offers a model for brain repair through learning. [source]