| |||
Brain Disorders (brain + disorders)
Kinds of Brain Disorders Selected AbstractsCost of disorders of the brain in NorwayACTA NEUROLOGICA SCANDINAVICA, Issue 2010L. J. Stovner Stovner LJ, Gjerstad L, Gilhus NE, Storstein A, Zwart JA. Cost of disorders of the brain in Norway. Acta Neurol Scand: 2010: 122 (Suppl. 190): 1,5. © 2010 John Wiley & Sons A/S. Background,,, Little is known about the cost of neurological disorders in Norway. Objectives,,, To estimate the cost of disorders of the brain, including the main psychiatric, neurological and neurosurgical conditions in Norway. Methods,,, Most of the data are extrapolations from a large European cost study that collected the best available epidemiological and health economical evidence for the year 2004. Some epidemiological data are available from Norway, but very little on costs. Results,,, Brain disorders seemed to affect 1.5 million Norwegians in 2004, and the total cost amounted to 5.8 billion Euros. The most prevalent disorders are anxiety disorders and migraine, and the most costly are affective disorders, addiction and dementia. Migraine is the most costly of the purely neurological conditions, followed by stroke, epilepsy and Parkinson's disease. The indirect costs account for more than half of the total costs. Discussion,,, Although the different brain disorders are very dissimilar in appearance, from health economic and public health perspectives, it is relevant to view them as a whole, since many of them share important pathophysiological mechanisms. This means that new insights into one disorder can have relevance for many other disorders. Conclusion,,, As a result of the high impact on individuals and society, more resources should be allocated to treatment and research into brain disorders. [source] The zebrafish bHLH PAS transcriptional regulator, single-minded 1 (sim1), is required for isotocin cell developmentDEVELOPMENTAL DYNAMICS, Issue 8 2006Jennifer L. Eaton Abstract A wide range of physiological and behavioral processes, such as social, sexual, and maternal behaviors, learning and memory, and osmotic homeostasis are influenced by the neurohypophysial peptides oxytocin and vasopressin. Disruptions of these hormone systems have been linked to several neurobehavioral disorders, including autism, Prader-Willi syndrome, affective disorders, and obsessive-compulsive disorder. Studies in zebrafish promise to reveal the complex network of regulatory genes and signaling pathways that direct the development of oxytocin- and vasopressin-like neurons, and provide insight into factors involved in brain disorders associated with disruption of these systems. Isotocin, which is homologous to oxytocin, is expressed early, in a simple pattern in the developing zebrafish brain. Single-minded 1 (sim1), a member of the bHLH-PAS family of transcriptional regulatory genes, is required for terminal differentiation of mammalian oxytocin cells and is a master regulator of neurogenesis in Drosophila. Here we show that sim1 is expressed in the zebrafish forebrain and is required for isotocin cell development. The expression pattern of sim1 mRNA in the embryonic forebrain is dynamic and complex, and overlaps with isotocin expression in the preoptic area. We provide evidence that the role of sim1 in zebrafish neuroendocrine cell development is evolutionarily conserved with that of mammals. Developmental Dynamics 235:2071,2082, 2006. © 2006 Wiley-Liss, Inc. [source] Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brainGLIA, Issue 4 2009Ariane Sharif Abstract Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron,glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders. © 2008 Wiley-Liss, Inc. [source] Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasksHUMAN BRAIN MAPPING, Issue 7 2008Vince D. Calhoun Abstract Brain regions which exhibit temporally coherent fluctuations, have been increasingly studied using functional magnetic resonance imaging (fMRI). Such networks are often identified in the context of an fMRI scan collected during rest (and thus are called "resting state networks"); however, they are also present during (and modulated by) the performance of a cognitive task. In this article, we will refer to such networks as temporally coherent networks (TCNs). Although there is still some debate over the physiological source of these fluctuations, TCNs are being studied in a variety of ways. Recent studies have examined ways TCNs can be used to identify patterns associated with various brain disorders (e.g. schizophrenia, autism or Alzheimer's disease). Independent component analysis (ICA) is one method being used to identify TCNs. ICA is a data driven approach which is especially useful for decomposing activation during complex cognitive tasks where multiple operations occur simultaneously. In this article we review recent TCN studies with emphasis on those that use ICA. We also present new results showing that TCNs are robust, and can be consistently identified at rest and during performance of a cognitive task in healthy individuals and in patients with schizophrenia. In addition, multiple TCNs show temporal and spatial modulation during the cognitive task versus rest. In summary, TCNs show considerable promise as potential imaging biological markers of brain diseases, though each network needs to be studied in more detail. Hum Brain Mapp, 2008. © 2008 Wiley-Liss, Inc. [source] A comparison of brain activation patterns during covert and overt paced auditory serial addition test tasksHUMAN BRAIN MAPPING, Issue 6 2008Cristina Forn Abstract The Paced Auditory Serial Addition test (PASAT) is a sensitive task for evaluating cognitive impairment in patients with diffuse brain disorders, such as multiple sclerosis patients. Brain areas involved in this task have been investigated in diverse fMRI studies using different methodologies to control the subjects' responses during scanning. Here, we examined the possible differences between overt and covert responses during the PASAT task in 13 volunteers. Results showed similar activations in parietal and frontal brain areas during both versions of the task. The contrast between the two conditions (overt and covert) indicated that differences in these two methodologies were minimal. Unlike the covert condition, the overt version of the task obtained significant activations in the left superior and inferior frontal gyrus, bilateral occipital cortex, caudate nucleus and cerebellum. As expected, no significant overactivations were observed in the covert when compared with the overt condition. Discussion focuses on the lower cost of using verbal responses to monitor performance during the PASAT task, which might be generalisable to other frontal lobe tasks requiring discrete responses. Hum Brain Mapp, 2008. © 2007 Wiley-Liss, Inc. [source] Social Representations of AIDS: Pictures in Abnormal Psychology Textbooks, 1984,2005,JOURNAL OF APPLIED SOCIAL PSYCHOLOGY, Issue 1 2010Thomas J. Schoeneman We identified 129 pictures relating to AIDS/HIV in 94 abnormal psychology textbooks published between 1984 and 2005. Pictures included 189 persons with AIDS/HIV status or risk and 134 AIDS-related objects; they appeared in chapters on stress, sexual issues, substance abuse, and organic brain disorders. Individuals depicted were overwhelmingly male, White, adult, of unspecified sexual orientation, and undiagnosed with mental disorder. The most frequent AIDS-related objects were signs and posters, hospital furnishings, and drug paraphernalia. Thematic motifs across pictures included patient, information source, junkie, support group, celebrity, child victim, protesters, memorials, condom dispensary, and viral attack. Images of AIDS continue to invoke concepts of "the Other," death, victimization, and culpability. It is difficult to discuss AIDS without accessing its stereotypes. [source] Differential regulation of NMDA receptor function by DJ-1 and PINK1AGING CELL, Issue 5 2010Ning Chang Summary Dysfunction of PTEN-induced kinase 1 (PINK1) or DJ-1 promotes neuronal death and is implicated in the pathogenesis of Parkinson's disease, but the underlying mechanisms remain unclear. Given the roles of N -methyl- d- aspartate receptor (NMDAr)-mediated neurotoxicity in various brain disorders including cerebral ischemia and neurodegenerative diseases, we investigated the effects of PINK1 and DJ-1 on NMDAr function. Using protein overexpression and knockdown approaches, we showed that PINK1 increased NMDAr-mediated whole-cell currents by enhancing the function of NR2A-containing NMDAr subtype (NR2ACNR). However, DJ-1 decreased NMDAr-mediated currents, which was mediated through the inhibition of both NR2ACNR and NR2B-containing NMDAr subtype (NR2BCNR). We revealed that the knockdown of DJ-1 enhanced PTEN expression, which not only potentiated NR2BCNR function but also increased PINK1 expression that led to NR2ACNR potentiation. These results indicate that NMDAr function is differentially regulated by DJ-1-dependent signal pathways DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR. Our results further showed that the suppression of DJ-1, while promoted NMDA-induced neuronal death through the overactivation of PTEN/NR2BCNR-dependent cell death pathway, induced a neuroprotective effect to counteract DJ-1 dysfunction-mediated neuronal death signaling through activating PTEN/PINK1/NR2ACNR cell survival,promoting pathway. Thus, PINK1 acts with DJ-1 in a common pathway to regulate NMDAr-mediated neuronal death. This study suggests that the DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR pathways may represent potential therapeutic targets for the development of neuroprotection strategy in the treatment of brain injuries and neurodegenerative diseases such as Parkinson's disease. [source] The development of PET radioligands for imaging the translocator protein (18,kDa): What have we learned?JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 7 2010Christopher Luus Abstract The translocator protein (TSPO; 18,kDa), formerly known as the peripheral benzodiazepine receptor (PBR), is minimally expressed in the healthy brain. On the other hand, increased levels of TSPO have been noted in brain disorders for which an immune response is elicited. This increase in TSPO expression has been reported to coincide with the process of microglial activation making the measurement of TSPO density a useful indicator of active brain disease. To this end several new classes of TSPO positron emission tomography radioligands have been developed and evaluated. However, the incomplete pharmacological characterization of the TSPO and its ligands as well as differences in pathophysiology, pharmacology and molecular nature across species and tissue types means that caution must be exercised when comparing data obtained with various TSPO radioligands. A re-evaluation of our interpretation of imaging data, which better correlates with our current understanding of TSPO pharmacology in disease, requires consideration. Copyright © 2010 John Wiley & Sons, Ltd. [source] Radiation-induced brain disorders in patients with pituitary tumoursJOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, Issue 3 2004A Bhansali Summary Radiation-induced brain disorders (RIBD) are uncommon and they are grave sequelae of conventional radiotherapy. In the present report, we describe the clinical spectrum of RIBD in 11 patients who received post-surgery conventional megavoltage irradiation for residual pituitary tumours. Of these 11 patients (nine men, two women), seven had been treated for non-functioning pituitary tumours and four for somatotropinomas. At the time of irradiation the age of these patients ranged from 30 to 59 years (mean, 39.4 ± 8.3; median, 36) with a follow-up period of 6,96 months (mean, 18.3 ± 26.4; median, 11). The dose of radiation ranged from 45 to 90 Gy (mean, 51.3 ± 13.4; median, 45), which was given in 15,30 fractions (mean, 18.6 ± 5.0; median, 15) with 2.8 ± 0.3 Gy (median, 3) per fraction. The biological effective dose calculated for late complications in these patients ranged from 78.7 to 180 Gy (mean, 99.1 ± 27.5; median, 90). The lag time between tumour irradiation and the onset of symptoms ranged from 6 to 168 months (mean, 46.3 ± 57.0; median, 57). The clinical spectrum of RIBD included new-onset visual abnormalities in five, cerebral radionecrosis in the form of altered sensorium in four, generalized seizures in four, cognitive dysfunction in five, dementia in three and motor deficits in two patients. Magnetic resonance imaging (MRI)/CT of the brain was suggestive of radionecrosis in eight, cerebral oedema in three, cerebral atrophy in two and second neoplasia in one patient. Associated hormone deficiencies at presentation were hypogonadism in eight, hypoadrenalism in six, hypothyroidism in four and diabetes insipidus in one patient. Autopsy in two patients showed primitive neuroectodermal tumour (PNET) and brainstem radionecrosis in one, and a cystic lesion in the left frontal lobe following radionecrosis in the other. We conclude that RIBD have distinctive but varying clinical and radiological presentations. Diabetes insipidus and PNET as a second neoplastic disorder in adults following pituitary irradiation have not been reported previously. [source] REVIEW: Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and EJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Reynold Spector Abstract With the application of genetic and molecular biology techniques, there has been substantial progress in understanding how vitamins are transferred across the mammalian blood,brain barrier and choroid plexus into brain and CSF and how vitamin homeostasis in brain is achieved. In most cases (with the exception of the sodium-dependent multivitamin transporter for biotin, pantothenic acid, and lipoic acid), the vitamins are transported by separate carriers through the blood,brain barrier or choroid plexus. Then the vitamins are accumulated by brain cells by separate, specialized systems. This review focuses on six vitamins (B1, B3, B6, pantothenic acid, biotin, and E) and the newer genetic information including relevant ,knockdown' or ,knockout' models in mice and humans. The overall objective is to integrate this newer information with previous physiological and biochemical observations to achieve a better understanding of vitamin transport and homeostasis in brain. This is especially important in view of the newly described non-cofactor vitamin roles in brain (e.g. of B1, B3, B6, and E) and the potential roles of vitamins in the therapy of brain disorders. [source] Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2007Jenny Odeberg Abstract Human cytomegalovirus (HCMV) is the most common cause of congenital infections in developed countries, with an incidence varying between 0.5,2.2%. Such infection may be the consequence of either a primary infection or reactivation of a latent infection in the mother and the outcome may vary from asymptomatic to severe brain disorders. Moreover, infants that are asymptomatic at the time of birth may still develop neurologic sequelae at a later age. Our hypothesis is that infection of stem cells of the central nervous system by HCMV alters the proliferation, differentiation or migration of these cells, and thereby gives rise to the brain abnormalities observed. We show that infection of human neural precursor cells (NPCs) with the laboratory strain Towne or the clinical isolate TB40 of HCMV suppresses the differentiation of these cells into astrocytes even at an multiplicity of infection (MOI) as low as 0.1 (by 33% and 67%, respectively). This inhibition required active viral replication and the expression of late HCMV proteins. Infection as late as 24 hr after the onset of differentiation, but not after 72 hr, also prevented the maturation of infected cultures. Furthermore, in cultures infected with TB40 (at an MOI of 1), approximately 54% of the cells were apoptotic and cell proliferation was significantly attenuated. Clearly, HCMV can reduce the capacity of NPCs to differentiate into astrocytes and this effect may provide part of the explanation for the abnormalities in brain development associated with congenital HCMV infection. © 2006 Wiley-Liss, Inc. [source] Immunization with a cannabinoid receptor type 1 peptide results in experimental allergic meningocerebellitis in the Lewis rat: A model for cell-mediated autoimmune neuropathology,JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2002Margit G. Proescholdt Abstract Neuronal elements are increasingly suggested as primary targets of an autoimmune attack in certain neurological and neuropsychiatric diseases. Type 1 cannabinoid receptors (CB1) were selected as autoimmune targets because they are predominantly expressed on neuronal surfaces in brain and display strikingly high protein levels in striatum, hippocampus, and cerebellum. Female Lewis rats were immunized with N-terminally acetylated peptides (50 or 400 ,g per rat) of the extracellular domains of the rat CB1 and killed at various time points. Subsequent evaluation using immunohistochemistry and in situ hybridization showed dense infiltration of immune cells exclusively within the cerebellum, peaking 12,16 days after immunization with the CB1 peptide containing amino acids 9,25. The infiltrates clustered in meninges and perivascular locations in molecular and granular cell layers and were also scattered throughout the CB1-rich neuropil. They consisted primarily of CD4+ and ED1+ cells, suggestive of cell-mediated autoimmune pathology. There were no inflammatory infiltrates elsewhere in the brain or spinal cord. The results show that neuronal elements, such as neuronal cell-surface receptors, may be recognized as antigenic targets in a cell-mediated autoimmune attack and, therefore, support the hypothesis of cell-mediated antineuronal autoimmune pathology in certain brain disorders. Published 2002 Wiley-Liss, Inc. [source] Genetic alterations of protein-o-mannosyltransferase-1 in glioneuronal and glial brain tumors with subarachnoid spreadNEUROPATHOLOGY, Issue 2 2009Julia Snoei Leptomeningeal spread is a casual but conspicuous finding in both low- and high-grade gliomas. We hypothesized a compromised integrity of the glia limitans-basal lamina complex due to glycosylation defects by loss of protein-o-mannosyltransferase-1 (POMT1) activity, also a well-known feature in developmental brain disorders with leptomeningeal heterotopia. Hypothesizing it as analogous in gliomas, we have performed a comprehensive polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the POMT1 gene in 41 brain tumor specimens. Each specimen was subjected to laser capture microdissection analyses to dissect: (i) subarachnoid tumor components; (ii) deeply localized tumor areas; and (iii) histologically unaffected CNS fragments. In addition, leukocyte DNA of healthy Caucasians served as controls (n = 100). Sequence alterations were found in exons 7, 9, 15 and 18. Exon 7 bore two sequence alterations, one 751C > T transition with amino acid exchange of arginine by tryptophane (Arg251Trp) (n = 12/41 in Tu vs n = 7/82 in Co) and a 752G > A transition with replacement of arginine by glutamine (Arg251Gln) (n = 3/41 in Tu vs n = 0/82 in Co) that were significantly increased in the tumor specimens compared to controls (P < 0.05). A 979G > A transition in exon 9 resulted in a valine to isoleucine switch (Val327Ile) (n = 6/40 in Tu vs n = 4/84 in Co). Individual specimens revealed a 1565G > A (Arg522Lys) transition in exon 15 and a 1922C > T (Ala641Val) transition in exon 18. Two gangliogliomas only revealed sequence alterations in the superficial area but not in intraparenchymal and adjacent control specimens. We conclude that a significant increase of POMT1 missense mutations may indicate a functional role in neoplastic conditions in individual tumors. Future studies will be important to evaluate a functional impact of POMT1 alterations in human brain tumors. [source] Oxidative stress in developmental brain disordersNEUROPATHOLOGY, Issue 1 2009Masaharu Hayashi Oxidative stress is one of the predisposing factors in adult neurological disorders. We have examined the involvement of oxidative stress in child-onset neurodegenerative disorders, and here we review the findings from our analysis. In cases of Cockayne syndrome, the oxidative products of lipids and proteins were increased in the globus pallidus; however, oxidative nucleotide damage that coincided with reduced copper/zinc superoxide dismutase (Cu/ZnSOD) expression was observed in cases of xeroderma pigmentosum, and these patients also presented increased oxidative stress markers in urine samples. In spinal muscular atrophy, lipid peroxidation in conjunction with oxidative DNA damage was observed in motor neurons. Cases of subacute sclerosing panencephalitis presented oxidative nucleoside damage in cerebral cortical neurons at early disease stages, which were subsequently replaced by lipid peroxidation in glial cells of cerebral white matter. In relation to progressive myoclonic epilepsy, oxidative damage to DNA, proteins, and lipids appeared to coincide with cerebral and cerebellar cortical lesions of neuronal ceroid-lipofuscinosis. Patients with Lafora disease also presented an increase in oxidative stress markers for DNA and/or lipids in the brain and urine. These findings imply involvement of oxidative stress in developmental brain disorders; antioxidant agents could prove to be useful for treating patients with those disorders. [source] Diffusion tensor imaging in fixed brain tissue at 7.0 TNMR IN BIOMEDICINE, Issue 2 2003David N. Guilfoyle Abstract The purpose of this work is to assess the feasibility of performing quantitative in vitro brain tissue diffusion tensor imaging (DTI) measurements and to examine their comparability to in vivo measurements. DTI of fixed tissue at high field strength is potentially a very valuable investigative tool as very high spatial resolution can be achieved. DTI was applied to human and mouse brain fixed tissue samples as well as in vivo measurements of the mouse brain. T1 and T2 relaxography of the fixed tissue samples was also performed to provide further characterization of the tissue. All experiments were performed at 7,T. The fractional anisotropy (FA) of the human fixed brain tissue samples is found to be higher in the corpus callosum than in the occipital white matter region, consistent with in vivo measurements reported in the literature. Our FA measurements of the corpus callosum of a mouse brain are also found to be the same both in vitro and in vivo. This preliminary work supports the use of DTI in both fixed human and fixed animal brain tissue as a valid investigative tool. With the increased availability of brain banks in different brain disorders, DTI in fixed tissue may prove to be a very useful method for the study of white matter abnormalities. Copyright © 2003 John Wiley & Sons, Ltd. [source] Developmental vitamin D deficiency alters brain protein expression in the adult rat: Implications for neuropsychiatric disordersPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2007Lionel Almeras Abstract An increased risk for multiple sclerosis and schizophrenia is observed at increasing latitude and in patients born in winter or spring. To explore a possible link between maternal vitamin D deficiency and these brain disorders, we examined the impact of prenatal hypovitaminosis D on protein expression in the adult rat brain. Vitamin D-deficient female rats were mated with vitamin D normal males. Pregnant females were kept vitamin D-deficient until birth whereupon they were returned to a control diet. At week 10, protein expression in the progeny's prefrontal cortex and hippocampus was compared with control animals using silver staining 2-D gels associated with MS and newly devised data mining software. Developmental vitamin D (DVD) deficiency caused a dysregulation of 36 brain proteins involved in several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, PTMs, synaptic plasticity and neurotransmission. A computational analysis of these data revealed that (i) nearly half of the molecules dysregulated in our animal model have also been shown to be misexpressed in either schizophrenia and/or multiple sclerosis and (ii) an impaired synaptic network may be a consequence of mitochondrial dysfunction. [source] Psychogeriatric Research: A Conceptual Introduction to Aging and Geriatric NeurosciencePSYCHOGERIATRICS, Issue 3 2001Ramón Cacabelos Abstract: Psychogeriatrics (PG) is a multidisciplinary specialty in clinical neuroscience dealing with brain disorders in the elderly population. As any other biomedical field PG has to establish an educational and practical framework in epidemiology, etiopathogenesis, diagnosis, treatment, and social, ethical, and legal issues associated with brain aging and age-related central nervous system disorders. Understanding the molecular basis of aging will help to characterize and differentiate the fundamentals of pathological aging and psychogeriatric ailments. Modern epidemiology of age-related brain disorders have to incorporate novel diagnostic criteria, biological markers, and genetic epidemiology to its methodological armamentarium to avoid bias. Molecular genetics will help to conceptually redefine many psychogeriatric disorders depending upon its genetic component and those interacting environmental factors leading to the phenotypic expression of given diseases. Genetic testing for monogenic and complex/polygenic/multifactorials disorders has to be included in diagnostic protocols since approximately 60 to 80% of major psychogeriatric disorders are genetically driven. It is also important to distinguish mutational genetics from susceptibility genetics in order to establish novel therapeutic strategies and preventive programmes. Genomics, proteomics, and pharmacogenomics are novel fields from which PG can benefit in the areas of etiopathogenesis, diagnosis, and treatment. Drug development in PG requires updated regulations in developed countries. New pharmacological treatments for aging brain disorders are needed. Pharmacogenomics will become an optimal strategy for drug development, contributing to design a molecular psychopharmacology for the elderly, individualizing drug therapy, optimizing efficacy and safety, and reducing unnecessary costs. [source] Tryptamine induces cell death with ultrastructural features of autophagy in neurons and glia: Possible relevance for neurodegenerative disordersTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2006Federico Herrera Abstract Tryptamine derivatives are a family of biogenic amines that have been suggested to be modulators of brain function at physiological concentrations. However, pharmacological concentrations of these amines display amphetamine-like properties, and they seem to play a role in brain disorders. Amphetamines induce autophagy in nerve cells, and this type of cell death has also been involved in neurodegenerative diseases. In the present work, we clearly demonstrate for the very first time that high concentrations of tryptamine (0.1,1 mM) induce autophagy in HT22 and SK-N-SH nerve cell lines and in primary cultures of astrocytes, glial cells being less sensitive than neurons. Ultrastructural cell morphology shows all of the typical hallmarks of autophagy. There is no nuclear chromatin condensation, endoplasmic reticulum and mitochondria are swollen, and a great number of double-membraned autophagosomes and residual bodies can be shown in the cytoplasm. Autophagosomes and residual bodies contain mitochondria, membranes, and vesicles and remain unabridged until the cell membrane is disrupted and the cell dies. The same results have been found when cells were incubated with high concentrations of 5-methoxytryptamine (0.1,1 mM). Our results establish a possible link between the role of tryptamine derivatives in brain disorders and the presence of autophagic cell death in these kinds of disorders. Anat Rec Part A, 288A:1026,1030, 2006. © 2006 Wiley-Liss, Inc. [source] High-intensity focused ultrasound for noninvasive functional neurosurgery,ANNALS OF NEUROLOGY, Issue 6 2009Ernst Martin MD Transcranial magnetic resonance (MR)-guided high-intensity focused ultrasound (tcMRgHIFU) implies a novel, noninvasive treatment strategy for various brain diseases. Nine patients with chronic neuropathic pain were treated with selective medial thalamotomies. Precisely located thermal ablations of 4mm in diameter were produced at peak temperatures of 51°C to 60°C under continuous visual MR guidance and MR thermometry. The resulting lesions are clearly visible on follow-up MR imaging. All treatments were well tolerated, without side effects or neurological deficits. This is the first report on successful clinical application of tcMRgHIFU in functional brain disorders, portraying it as safe and reliable for noninvasive neurosurgical interventions. Ann Neurol 2009;66:858,861 [source] RPP25 is developmentally regulated in prefrontal cortex and expressed at decreased levels in autism spectrum disorderAUTISM RESEARCH, Issue 4 2010Hsien-Sung Huang Abstract Dysfunction of cerebral cortex in autism is thought to involve alterations in inhibitory neurotransmission. Here, we screened, in prefrontal cortex (PFC) of 15 subjects diagnosed with autism and 15 matched controls the expression of 44 transcripts that are either preferentially expressed in gamma-aminobutyric acidergic interneurons of the mature cortex or important for the development of inhibitory circuitry. Significant alterations in the autism cohort included decreased expression (,45%) of RPP25 (15q24.1), which is located within the autism susceptibility locus, 15q22-26. RPP25, which encodes the 25,kDa subunit of ribonuclease P involved in tRNA and pre-ribosomal RNA processing, was developmentally regulated in cerebral cortex with peak levels of expression during late fetal development (human) or around birth (mouse). In the PFC, RPP25 chromatin showed high levels of histone H3-lysine 4 trimethylation, an epigenetic mark associated with transcriptional regulation. Unexpectedly, and in contrast to peripheral tissues, levels of RPP25 protein remained undetectable in fetal and adult cerebral cortex. Taken together, these findings suggest a potential role for the RPP25 gene transcript in the neurobiology of developmental brain disorders. [source] Brain Neurons Express Ornithine Decarboxylase-Activating Antizyme Inhibitor 2 with Accumulation in Alzheimer's DiseaseBRAIN PATHOLOGY, Issue 3 2010Laura T. Mäkitie Abstract Polyamines are small cationic molecules that in adult brain are connected to neuronal signaling by regulating inward-rectifier K+ -channels and different glutamate receptors. Antizyme inhibitors (AZINs) regulate the cellular uptake of polyamines and activate ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine synthesis. Elevated levels of ODC activity and polyamines are detected in various brain disorders including stroke and Alzheimer's disease (AD). We originally reported a novel brain- and testis-specific AZIN, called AZIN2, the distribution of which we have now studied in normal and diseased human brain by in situ hybridization and immunohistochemistry. We found the highest accumulation of AZIN2 in a pearl-on-the-string-like distribution along the axons in both the white and gray matter. AZIN2 was also detected in a vesicle-like distribution in the somas of selected cortical pyramidal neurons. Double-immunofluorescence staining revealed co-localization of AZIN2 and N-methyl D-aspartate-type glutamate receptors (NMDARs) in pyramidal neurons of the cortex. Moreover, we found accumulation of AZIN2 in brains affected by AD, but not by other neurodegenerative disorders (CADASIL or Lewy body disease). ODC activity is mostly linked to cell proliferation, whereas its regulation by AZIN2 in post-mitotically differentiated neurons of the brain apparently serves different purposes. The subcellular distribution of AZIN2 suggests a role in vesicular trafficking. [source] Cost of disorders of the brain in NorwayACTA NEUROLOGICA SCANDINAVICA, Issue 2010L. J. Stovner Stovner LJ, Gjerstad L, Gilhus NE, Storstein A, Zwart JA. Cost of disorders of the brain in Norway. Acta Neurol Scand: 2010: 122 (Suppl. 190): 1,5. © 2010 John Wiley & Sons A/S. Background,,, Little is known about the cost of neurological disorders in Norway. Objectives,,, To estimate the cost of disorders of the brain, including the main psychiatric, neurological and neurosurgical conditions in Norway. Methods,,, Most of the data are extrapolations from a large European cost study that collected the best available epidemiological and health economical evidence for the year 2004. Some epidemiological data are available from Norway, but very little on costs. Results,,, Brain disorders seemed to affect 1.5 million Norwegians in 2004, and the total cost amounted to 5.8 billion Euros. The most prevalent disorders are anxiety disorders and migraine, and the most costly are affective disorders, addiction and dementia. Migraine is the most costly of the purely neurological conditions, followed by stroke, epilepsy and Parkinson's disease. The indirect costs account for more than half of the total costs. Discussion,,, Although the different brain disorders are very dissimilar in appearance, from health economic and public health perspectives, it is relevant to view them as a whole, since many of them share important pathophysiological mechanisms. This means that new insights into one disorder can have relevance for many other disorders. Conclusion,,, As a result of the high impact on individuals and society, more resources should be allocated to treatment and research into brain disorders. [source] The influence of cognitive impairment on health-related quality of life in neurological diseaseACTA NEUROPSYCHIATRICA, Issue 1 2010Alex J. Mitchell Mitchell AJ, Kemp S, Benito-León J, Reuber M. The influence of cognitive impairment on health-related quality of life in neurological disease. Background: Cognitive impairment is the most consistent neurological complication of acquired and degenerative brain disorders. Historically, most focus was on dementia but now has been broadened to include the important construct of mild cognitive impairment. Methods: Systematic search and review of articles linked quality of life (QoL) and cognitive complications of neurological disorders. We excluded QoL in dementia. Results: Our search identified 249 publications. Most research examined patients with brain tumours, stroke, epilepsy, head injury, Huntington's disease, motor neuron disease, multiple sclerosis and Parkinson's disease. Results suggested that the majority of patients with epilepsy, motor neuron disease, multiple sclerosis, Parkinson's disease, stroke and head injury have subtle cognitive deficits early in their disease course. These cognitive complaints are often overlooked by clinicians. In many cases, the cognitive impairment is progressive but it can also be relapsing-remitting and in some cases reversible. Despite the importance of severe cognitive impairment in the form of dementia, there is now increasing recognition of a broad spectrum of impairment, including those with subclinical or mild cognitive impairment. Even mild cognitive difficulties can have functional and psychiatric consequences,especially when they are persistent and untreated. Specific cognitive deficits such an inattention, dysexecutive function and processing speed may affect a number of quality of life (QoL) domains. For example, cognitive impairment influences return to work, interpersonal relationships and leisure activities. In addition, fear of future cognitive decline may also impact upon QoL. Conclusions: We recommend further development of simple tools to screen for cognitive impairments in each neurological condition. We also recommend that a thorough cognitive assessment should be a part of routine clinical practice in those caring for individuals with neurological disorders. [source] |