Brain Defects (brain + defect)

Distribution by Scientific Domains

Selected Abstracts

Hemispheric brain volume replacement with free latissimus dorsi flap as first step in skull reconstruction

MICROSURGERY, Issue 4 2005
Anton H. Schwabegger M.D.
Large skull defects lead to progressive depression deformities, with resulting neurological deficits. Thus, cranioplasty with various materials is considered the first choice in therapy to restore cerebral function. A 31-year-old female presented with a massive left-sided hemispheric substance defect involving bone and brain tissue. Computed tomography showed a substantial convex defect involving the absence of calvarial bone as well as more than half of the left hemisphere of the brain, with a profound midline shift and a compression of the ventricular system. There was a severe problem due to multiple deep-skin ulcerations at the depression margin, prone to skin perforation with a probability of intracranial infection. In a first step, a free myocutaneous latissimus dorsi flap was transplanted for volume replacement of the hemispheric brain defect, and 4 months later, artificial bone substitute was implanted in order to prevent progressive vault depression deformity. Healing was uneventful, and the patient showed definite neurological improvement postoperatively. Free tissue transfer can be a valuable option in addition to cranioplasty in the treatment of large bony defects of the skull. Besides providing stable coverage for the reconstructed bone or its substitute, it can also serve as a volume replacement. © 2005 Wiley-Liss, Inc. Microsurgery 25:325,328, 2005. [source]

Alcohol Exposure Alters the Expression Pattern of Neural Cell Adhesion Molecules During Brain Development

R. Miñana
Abstract: Neural cell adhesion molecules (NCAMs) play critical roles during development of the nervous system. The aim of this study is to investigate the possible effect of ethanol exposure on the pattern of expression and sialylation of NCAM isoforms during postnatal rat brain development because alterations in NCAM content and distribution have been associated with defects in cell migration, synapse formation, and memory consolidation, and deficits in these processes have been observed after in utero alcohol exposure. The expression of NCAM isoforms in the developing cerebral cortex of pups from control and alcohol-fed mothers was assessed by western blotting, ribonuclease protection assay, and immunocytochemistry. The highly sialylated form of NCAM [polysialic acid (PSA)-NCAM] is mainly expressed during the neonatal period and then is down-regulated in parallel with the appearance of NCAM 180 and NCAM 140. Ethanol exposure increases PSA-NCAM levels during the neonatal period, delays the loss of PSA-NCAM, decreases the amount of NCAM 180 and NCAM 140 isoforms, and reduces sialyltransferase activity during postnatal brain development. Neuraminidase treatment of ethanol-exposed neonatal brains leads to more intense band degradation products, suggesting a higher content of NCAM polypeptides carrying PSA in these samples. However, NCAM mRNA levels are not changed by ethanol. Immunocytochemical analysis demonstrates that ethanol triggers an increase in PSA-NCAM immunolabeling in the cytoplasm of astroglial cells, accompanied by a decrease in immunogold particles over the plasma membrane. These findings indicate that ethanol exposure during brain development alters the pattern of NCAM expression and suggest that modification of NCAM could affect neuronal-glial interactions that might contribute to the brain defects observed after in utero alcohol exposure. [source]

Apoptotic and behavioral sequelae of mild brain trauma in mice

David Tweedie
Abstract Mild traumatic brain injury (mTBI) is a not uncommon event in adolescents and young adults. Although it does not result in clear morphological brain defects, it is associated with long-term cognitive, emotional, and behavioral problems. Herein, we characterized the biochemical and behavioral changes associated with experimental mTBI in mice that may act as either targets or surrogate markers for interventional therapy. Specifically, mTBI was induced by 30-g and 50-g weight drop, and at 8 and 72 hr thereafter markers of cellular apoptosis,caspase-3, Bax, apoptosis-inducing factor (AIF), and cytochrome-c (Cyt-c),were quantified by Western blot analysis in hippocampus ipsilateral to the impact. Levels of amyloid-, precursor protein (APP) were also measured, and specific behavioral tests,passive avoidance, open field, and forced swimming (Porsolt) paradigms,were undertaken to assess learning, emotionality, and emotional memory. In the absence of hemorrhage or infarcts, as assessed by triphenyltetrazolium chloride staining, procaspase-3 and Bax levels were markedly altered following mTBI at both times. No cleaved caspase-3 was detected, and levels of AIF and Cyt-c, but not APP, were significantly changed at 72 hr. Mice subjected to mTBI were indistinguishable from controls by neurological examination at 1 and 24 hr, and by passive avoidance/open field at 72 hr, but could be differentiated in the forced swimming paradigm. In general, this model mimics the diffuse effects of mTBI on brain function associated with the human condition and highlights specific apoptotic proteins and a behavioral paradigm as potential markers for prospective interventional strategies. © 2007 Wiley-Liss, Inc. [source]

Ethanol Impairs Activation of Retinoic Acid Receptors in Cerebellar Granule Cells in a Rodent Model of Fetal Alcohol Spectrum Disorders

ALCOHOLISM, Issue 5 2010
Ambrish Kumar
Background:, Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. Methods:, The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. Results:, Findings from these studies demonstrated that ethanol exposure reduced the expression of RAR,/, while it increased the expression of RXR,/, in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. Conclusion:, For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects caused by excessive ethanol exposure, such as in Fetal Alcohol Spectrum Disorders. [source]

Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy

Caroline Godfrey BSc
Objective Defects in glycosylation of ,-dystroglycan are associated with several forms of muscular dystrophy, often characterized by congenital onset and severe structural brain involvement, collectively known as dystroglycanopathies. Six causative genes have been identified in these disorders including fukutin. Mutations in fukutin cause Fukuyama congenital muscular dystrophy. This is the second most common form of muscular dystrophy in Japan and is invariably associated with mental retardation and structural brain defects. The aim of this study was to determine the genetic defect in two white families with a dystroglycanopathy. Methods The six genes responsible for dystroglycanopathies were studied in three children with a severe reduction of ,-dystroglycan in skeletal muscle. Results We identified pathogenic fukutin mutations in these two families. Affected children had normal intelligence and brain structure and shared a limb girdle muscular dystrophy (LGMD) phenotype, had marked elevation of serum creatine kinase, and were all ambulant with remarkable steroid responsiveness. Interpretation Our data suggest that fukutin mutations occur outside Japan and can be associated with much milder phenotypes than Fukuyama congenital muscular dystrophy. These findings significantly expand the spectrum of phenotypes associated with fukutin mutations to include this novel form of limb girdle muscular dystrophy that we propose to name LGMD2L. Ann Neurol 2006 [source]

Totally tubular: the mystery behind function and origin of the brain ventricular system

BIOESSAYS, Issue 4 2009
Laura Anne Lowery
Abstract A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system. [source]