| |||
Brain Areas (brain + area)
Kinds of Brain Areas Selected AbstractsORIGINAL RESEARCH,BASIC SCIENCE: Acute and Repeated Flibanserin Administration in Female Rats Modulates Monoamines Differentially Across Brain Areas: A Microdialysis StudyTHE JOURNAL OF SEXUAL MEDICINE, Issue 5 2010Kelly A. Allers PhD ABSTRACT Introduction., Hypoactive sexual desire disorder (HSDD) is defined as persistent lack of sexual fantasies or desire marked by distress. With a prevalence of 10% it is the most common form of female sexual dysfunction. Recently, the serotonin-1A (5-HT1A) receptor agonist and the serotonin-2A (5-HT2A) receptor antagonist flibanserin were shown to be safe and efficacious in premenopausal women suffering from HSDD in phase III clinical trials. Aim., The current study aims to assess the effect of flibanserin on neurotransmitters serotonin (5-HT), norepinephrine (NE), dopamine (DA), glutamate, and ,-aminobutyric acid (GABA) in brain areas associated with sexual behavior. Methods., Flibanserin was administered to female Wistar rats (280,350 g). Microdialysis probes were stereotactically inserted into the mPFC, NAC, or MPOA, under isoflurane anesthesia. The extracellular levels of neurotransmitters were assessed in freely moving animals, 24 hours after the surgery. Main Outcome Measures., Dialysate levels of DA, NE, and serotonin from medial prefrontal cortex (mPFC), nucleus accumbens (NAC), and hypothalamic medial preoptic area (MPOA) from female rats. Results., Acute flibanserin administration decreased 5-HT and increased NE levels in all tested areas. DA was increased in mPFC and MPOA, but not in the NAC. Basal levels of NE in mPFC and NAC and of DA in mPFC were increased upon repeated flibanserin administration, when compared to vehicle-treated animals. The basal levels of 5-HT were not altered by repeated flibanserin administration, but basal DA and NE levels were increased in the mPFC. Glutamate and GABA levels remained unchanged following either repeated or acute flibanserin treatment. Conclusions., Systemic administration of flibanserin to female rats differentially affects the monoamine systems of the brain. This may be the mechanistic underpinning of flibanserin's therapeutic efficacy in HSDD, as sexual behavior is controlled by an intricate interplay between stimulatory (catecholaminergic) and inhibitory (serotonergic) systems. Allers KA, Dremencov E, Ceci A, Flik G, Ferger B, Cremers TIFH, Ittrich C, and Sommer B. Acute and repeated flibanserin administration in female rats modulates monoamines differentially across brain areas: A microdialysis study. J Sex Med 2010;7:1757,1767. [source] Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjectsACTA PSYCHIATRICA SCANDINAVICA, Issue 1 2010R. A. Lanius Objective:, The goal of this study was to investigate the relationship between default mode network connectivity and the severity of post-traumatic stress disorder (PTSD) symptoms in a sample of eleven acutely traumatized subjects. Method:, Participants underwent a 5.5 min resting functional magnetic resonance imaging scan. Brain areas whose activity positively correlated with that of the posterior cingulate/precuneus (PCC) were assessed. To assess the relationship between severity of PTSD symptoms and PCC connectivity, the contrast image representing areas positively correlated with the PCC was correlated with the subjects' Clinician Administered PTSD Scale scores. Results:, Results suggest that resting state connectivity of the PCC with the perigenual anterior cingulate and the right amygdala is associated with current PTSD symptoms and that correlation with the right amygdala predicts future PTSD symptoms. Conclusion:, These results may contribute to the development of prognostic tools to distinguish between those who will and those who will not develop PTSD. [source] A comparison of brain activation patterns during covert and overt paced auditory serial addition test tasksHUMAN BRAIN MAPPING, Issue 6 2008Cristina Forn Abstract The Paced Auditory Serial Addition test (PASAT) is a sensitive task for evaluating cognitive impairment in patients with diffuse brain disorders, such as multiple sclerosis patients. Brain areas involved in this task have been investigated in diverse fMRI studies using different methodologies to control the subjects' responses during scanning. Here, we examined the possible differences between overt and covert responses during the PASAT task in 13 volunteers. Results showed similar activations in parietal and frontal brain areas during both versions of the task. The contrast between the two conditions (overt and covert) indicated that differences in these two methodologies were minimal. Unlike the covert condition, the overt version of the task obtained significant activations in the left superior and inferior frontal gyrus, bilateral occipital cortex, caudate nucleus and cerebellum. As expected, no significant overactivations were observed in the covert when compared with the overt condition. Discussion focuses on the lower cost of using verbal responses to monitor performance during the PASAT task, which might be generalisable to other frontal lobe tasks requiring discrete responses. Hum Brain Mapp, 2008. © 2007 Wiley-Liss, Inc. [source] Intravascular neural interface with nanowire electrodeELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 7 2009Hirobumi Watanabe Abstract A minimally invasive electrical recording and stimulating technique capable of simultaneously monitoring the activity of a significant number (e.g., 103 to 104) of neurons is an absolute prerequisite in developing an effective brain,machine interface. Although there are many excellent methodologies for recording single or multiple neurons, there has been no methodology for accessing large numbers of cells in a behaving experimental animal or human individual. Brain vascular parenchyma is a promising candidate for addressing this problem. It has been proposed [1, 2] that a multitude of nanowire electrodes introduced into the central nervous system through the vascular system to address any brain area may be a possible solution. In this study we implement a design for such microcatheter for ex vivo experiments. Using Wollaston platinum wire, we design a submicron-scale electrode and develop a fabrication method. We then evaluate the mechanical properties of the electrode in a flow when passing through the intricacies of the capillary bed in ex vivo Xenopus laevis experiments. Furthermore, we demonstrate the feasibility of intravascular recording in the spinal cord of Xenopus laevis. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 92(7): 29,37, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10058 [source] fMRI of Brain Activation in a Genetic Rat Model of Absence SeizuresEPILEPSIA, Issue 6 2004Jeffrey R. Tenney Summary: Purpose: EEG-triggered functional magnetic resonance imaging (fMRI) was used to identify areas of brain activation during spontaneous spike-and-wave discharges (SWDs) in an epileptic rat strain under awake conditions. Methods: Spontaneous absence seizures from 10 WAG/Rij rats were imaged by using T2*-weighted echo planar imaging at 4.7 Tesla. fMRI of the blood-oxygenation-level,dependent (BOLD) signal was triggered based on EEG recordings during imaging. Images obtained during spontaneous SWDs were compared with baseline images. Results: Significant positive BOLD signal changes were apparent in several areas of the cortex and several important nuclei of the thalamus. In addition, no negative BOLD signal was found in any brain area. Conclusions: We have shown that EEG-triggered BOLD fMRI can be used to detect cortical and thalamic activation related to the spontaneous SWDs that characterize absence seizures in awake WAG/Rij rats. These results draw an anatomic correlation between areas in which increased BOLD signal is found and those in which SWDs have been recorded. In addition, no negative BOLD signal was found to be associated with these spontaneous SWDs. We also demonstrated the technical feasibility of using EEG-triggered fMRI in a genetic rat model of absence seizure. [source] Deep brain stimulation mechanisms: beyond the concept of local functional inhibitionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010Jean-Michel Deniau Abstract Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets. [source] Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampusHIPPOCAMPUS, Issue 8 2009Lars Fester Abstract Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354,1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area. To this end, we treated hippocampal cultures with cholesterol, estradiol, or with letrozole, a potent aromatase inhibitor. Cholesterol increased neuronal estradiol release into the medium, the number of spine synapses in hippocampal slice cultures, and immunoreactivity of synaptic proteins in dispersed cultures. Simultaneous application of cholesterol and letrozole or blockade of estrogen receptors by ICI 182 780 abolished cholesterol-induced synapse formation. As a further approach, we inhibited the access of cholesterol to the first enzyme of steroidogenesis by knock-down of steroidogenic acute regulatory protein, the rate-limiting step in steroidogenesis. A rescue of reduced synaptic protein expression in transfected cells was achieved by estradiol but not by cholesterol. Our data indicate that in the hippocampus cholesterol-promoted synapse formation requires the conversion of cholesterol to estradiol. © 2009 Wiley-Liss, Inc. [source] Androgenic Regulation of Steroid Hormone Receptor mRNAs in the Brain of Whiptail LizardsJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2000Godwin Sex and species differences in androgenic regulation of steroid hormone receptor mRNAs were examined in the diencephalon of two species of whiptail lizards: Cnemidophorus inornatus is a sexual species and the direct evolutionary ancestor to Cnemidophorus uniparens, an all-female parthenogenetic species. Lizards were gonadectomized and treated with different doses of either aromatizable testosterone or nonaromatizable dihydrotestosterone. The relative abundances of androgen-, oestrogen-, and progesterone-receptor mRNAs were compared in various nuclei following in situ hybridization with homologous riboprobes. A diversity of patterns in androgenic regulation was observed, with effects differing according to brain region, the steroid-receptor mRNA being considered and, in some cases, between androgens. In the ancestral sexual species, intact males had lower androgen-receptor mRNA abundances than castrated, blank-implanted males in the medial preoptic area. Testosterone significantly decreased androgen-receptor mRNA abundance in the medial preoptic area of castrated males. Males had higher androgen-receptor mRNA levels in the preoptic area than females generally and neither the sexual or parthenogenetic females showed a decrease in androgen-receptor mRNA with androgen treatment. Both testosterone and dihydrotestosterone increased oestrogen-receptor mRNA abundance in the ventromedial hypothalamus of C. inornatus, but no sex differences in this effect were observed. Gonadectomy decreased, whereas androgen treatment increased, progesterone-receptor mRNA abundance in the ventromedial hypothalamus. There was a sex difference in this response to androgen in the sexual species, with males having greater amounts than females in this brain area. The parthenogenetic species exhibited a similar pattern to females of the sexual species, but the levels were higher overall, possibly because Cnemidophorus uniparens is triploid. The periventricular preoptic area showed a different pattern, with testosterone treatment increasing progesterone-receptor mRNA abundance in both sexes of the sexual species and in the parthenogenetic species, while dihydrotestosterone did not. The diversity of patterns in androgen effects indicates that gonadal sex, aromatization of androgen, and perhaps gene dosage all influence the expression of steroid-receptor mRNAs in the lizard brain. [source] Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predatorJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2009Daniele Cristina Aguiar Abstract Innate fear stimulus induces activation of neurons containing the neuronal nitric oxide synthase enzyme (nNOS) in defensive-related brain regions such as the dorsolateral periaqueductal gray (dlPAG). Intra-dlPAG administration of nitric oxide synthase (NOS) inhibitors and glutamate antagonists induce anxiolytic-like responses. We investigated the involvement of nitric oxide (NO) and glutamate neurotransmission in defensive reactions modulated by dlPAG. We tested if intra-dlPAG injections of the selective nNOS inhibitor, N-propyl- L -arginine (NP), or the glutamate antagonist, AP7 (2-amino-7-phosphonoheptanoic acid), would attenuate behavioral responses and cellular activation induced by predator exposure (cat). Fos-like immunoreactivity (FLI) was used as a marker of neuronal functional activation, whereas nNOS immunohistochemistry was used to identify NOS neurons. Cat exposure induced fear responses and an increase of FLI in the dlPAG and dorsal premammillary nucleus (PMd). NP and AP7 attenuated the cat-induced behavioral responses. Whereas NP tended to attenuate FLI in the dlPAG, AP7 induced a significant reduction in cellular activation of this region. The latter drug, however, increased FLI and double-labeled cells in the PMd. Cellular activation of this region was significantly correlated with time spent near the cat (r = 0.7597 and 0.6057 for FLI and double-labeled cells). These results suggest that glutamate/NO-mediated neurotransmission in the dlPAG plays an important role in responses elicit by predator exposure. Blocking these neurotransmitter systems in this brain area impairs defensive responses. The longer time spent near the predator that follows AP7 effect could lead to an increased cellular activation of the PMd, a more rostral brain area that has also been related to defensive responses. © 2009 Wiley-Liss, Inc. [source] Genetic Correlations Between Initial Sensitivity to Ethanol and Brain cAMP Signaling in Inbred and Selectively Bred MiceALCOHOLISM, Issue 6 2001Shelli L. Kirstein Background: Several lines of evidence have suggested a role for cAMP (adenosine 3,,5,-cyclic monophosphate) signaling in the acute and chronic effects of ethanol. This study investigated whether there is a genetic correlation between cAMP synthesis in the brain and the acute effects of ethanol [alcohol sensitivity or acute functional tolerance (AFT)]. Methods: By using nine inbred strains of mice, we measured initial sensitivity and AFT to ethanol with a test of balance on a dowel. Initial sensitivity was defined by the blood ethanol concentration (BEC0) at the loss of balance on a dowel after an ethanol injection [1.75 g/kg intraperitoneally (ip)]. When mice were able to regain balance on the dowel, BEC1 was determined, and a second ethanol injection was given (2 g/kg ip). Upon final regaining of balance, BEC2 was determined. AFT was defined by the difference between BEC1 and BEC2 (AFT =,BEC = BEC2, BEC1). Cyclic AMP synthesis was measured in whole-cell preparations in the cerebellum and other brain areas of mice of the nine inbred strains. Results: Significant differences in BEC0 and AFT were seen among the mice of the nine inbred strains. Cerebellar basal and forskolin- and isoproterenol-stimulated cAMP production differed significantly between the strains, and BEC0 was found to correlate significantly with forskolin- and isoproterenol-stimulated cAMP accumulation in the cerebellum (r= 0.70 and 0.94, respectively). When we measured cAMP production in mesencephalic and telencephalic tissue in three strains of mice that differed significantly in isoproterenol-stimulated cAMP accumulation in the cerebellum, significant differences between strains were found only in telencephalic tissue. The relative relationship between the rank order of the three strains for cAMP accumulation in the telencephalon and initial sensitivity to ethanol was identical to that seen with the cerebellum. However, AFT did not correlate with cAMP accumulation in the cerebellum or any other brain area tested. Conclusions: These results suggest that cAMP-generating systems of the cerebellum and possibly the brain areas contained in telencephalic tissues (e.g., basal ganglia) may have an important relationship to an animal's initial sensitivity to the incoordinating effects of ethanol. [source] Regional cerebral blood flow autoregulation in patients with fulminant hepatic failureLIVER TRANSPLANTATION, Issue 6 2000Fin Stolze Larsen The absence of cerebral blood flow autoregulation in patients with fulminant hepatic failure (FHF) implies that changes in arterial pressure directly influence cerebral perfusion. It is assumed that dilatation of cerebral arterioles is responsible for the impaired autoregulation. Recently, frontal blood flow was reported to be lower compared with other brain regions, indicating greater arteriolar tone and perhaps preserved regional cerebral autoregulation. In patients with severe FHF (6 women, 1 man; median age, 46 years; range, 18 to 55 years), we tested the hypothesis that perfusion in the anterior cerebral artery would be less affected by an increase in mean arterial pressure compared with the brain area supplied by the middle cerebral artery. Relative changes in cerebral perfusion were determined by transcranial Doppler,measured mean flow velocity (Vmean), and resistance was determined by pulsatility index in the anterior and middle cerebral arteries. Cerebral autoregulation was evaluated by concomitant measurements of mean arterial pressure and Vmean in the anterior and middle cerebral arteries during norepinephrine infusion. Baseline Vmean was lower in the brain area supplied by the anterior cerebral artery compared with the middle cerebral artery (median, 47 cm/s; range, 21 to 62 cm/s v 70 cm/s; range 43 to 119 cm/s, respectively; P < .05). Also, vascular resistance determined by pulsatility index was greater in the anterior than middle cerebral artery (median, 1.02; range 1.00 to 1.37 v 0.87; range 0.75 to 1.48; P < .01). When arterial pressure was increased from 84 mm Hg (range 57 to 95 mm Hg) to 115 mm Hg (range, 73 to 130 mm Hg) during norepinephrine infusion, Vmean remained unchanged in 2 patients in the anterior cerebral artery, whereas it increased in the middle cerebral artery in all 7 patients. In the remaining patients, Vmean increased approximately 25% in both the anterior and middle cerebral arteries. Thus, this study could only partially confirm the hypothesis that autoregulation is preserved in the brain regions supplied by the anterior cerebral artery in patients with FHF. Although the findings of this small study need to be further evaluated, one should consider that autoregulation may be impaired not only in the brain region supplied by the middle cerebral artery, but also in the area corresponding to the anterior cerebral artery. [source] Striatal synaptic plasticity: Implications for motor learning and Parkinson's diseaseMOVEMENT DISORDERS, Issue 4 2005Antonio Pisani MD Abstract Changing the strength of synaptic connections between neurons is widely assumed to be the mechanism by which memory traces are encoded and stored in the central nervous system. Plastic changes appear to follow a regional specialization and underlie the specific type of memory mediated by the brain area in which plasticity occurs. Thus, long-term changes occurring at excitatory corticostriatal synapses should be critically involved in motor learning. Indeed, repetitive stimulation of the corticostriatal pathway can cause either a long-lasting increase or an enduring decrease in synaptic strength, respectively referred to as long-term potentiation (LTP), and long-term depression, both requiring a complex sequence of biochemical events. Once established, LTP can be reversed to control levels by a low-frequency stimulation protocol, an active phenomenon defined "synaptic depotentiation," required to erase redundant information. In the 6-hydroxydopamine rat model of Parkinson's disease (PD), striatal synaptic plasticity has been shown to be impaired, although chronic treatment with levodopa was able to restore it. Of interest, a consistent number of L -dopa,treated animals developed involuntary movements, resembling human dyskinesias. Strikingly, electrophysiological recordings from the dyskinetic group of rats demonstrated a selective impairment of synaptic depotentiation. This survey will provide an overview of plastic changes occurring at striatal synapses. The potential relevance of these findings in the control of motor function and in the pathogenesis both of PD and L -dopa,induced motor complications will be discussed. © 2005 Movement Disorder Society [source] Brain GABA editing by localized in vivo1H magnetic resonance spectroscopyNMR IN BIOMEDICINE, Issue 2 2004G. Bielicki Abstract Editing of GABA by 1H MRS in a specific brain area is a unique tool for in vivo non-invasive investigation of neurotransmission disorders. Selective GABA detection is achieved using sequences based on double quantum coherence (DQC). Our pulse sequence makes accurate measurements without artefacts due to spatial localization. The sequence was tested on a phantom solution. The effect of vigabatrin, a specific inhibitor of GABA transaminase, was measured in rat brain and GABA detection was performed in vivo in monkey brain using this procedure. Rats were spilt into two groups. In the control group, the rats had access to water and, in the other group (vigabatrin, VGB, rats), animals were allowed free access to drinking water containing vigabatrin. After 3 weeks of treatment, rats were anesthetized for in vivo NMR spectroscopy investigation. At the end of the experiment, brains were quickly removed, freeze-clamped and extracted with 4% perchloric acid. One part of the acid extract was used for GABA concentrations assessment by ion exchange chromatography with ninhydrin detection. The second was used for high-resolution NMR analysis. By chromatography measurements, the GABA concentration was 1.23±0.06,,mol/g for controls, while for vigabatrin-treated rats the GABA concentration was 4.89±1.60,,mol/g. The NMR in vivo results were closely correlated with the NMR ex vivo (r=0.99, p<0.01) and chromatography results (r=0.98, p<0.01). The correlation between ex vivo results and chromatography results was also high (r=0.99, p<0.001). This pulse sequence performed GABA editing from a 376,,l voxel located on the right basal ganglia area in a non-human primate brain. This in vivo GABA editing scheme can thus be proposed for accurate measurement of brain GABA concentrations. Copyright © 2004 John Wiley & Sons, Ltd. [source] Planum parietale of chimpanzees and orangutans: A comparative resonance of human-like planum temporale asymmetryTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2005Patrick J. Gannon Abstract We have previously demonstrated that leftward asymmetry of the planum temporale (PT), a brain language area, was not unique to humans since a similar condition is present in great apes. Here we report on a related area in great apes, the planum parietale (PP). PP in humans has a rightward asymmetry with no correlation to the L>R PT, which indicates functional independence. The roles of the PT in human language are well known while PP is implicated in dyslexia and communication disorders. Since posterior bifurcation of the sylvian fissure (SF) is unique to humans and great apes, we used it to determine characteristics of its posterior ascending ramus, an indicator of the PP, in chimpanzee and orangutan brains. Results showed a human-like pattern of R>L PP (P = 0.04) in chimpanzees with a nonsignificant negative correlation of L>R PT vs. R>L PP (CC = ,0.3; P = 0.39). In orangutans, SF anatomy is more variable, although PP was nonsignificantly R>L in three of four brains (P = 0.17). We have now demonstrated human-like hemispheric asymmetry of a second language-related brain area in great apes. Our findings persuasively support an argument for addition of a new component to the comparative neuroanatomic complex that defines brain language or polymodal communication areas. PP strengthens the evolutionary links that living great apes may offer to better understand the origins of these progressive parts of the brain. Evidence mounts for the stable expression of a neural foundation for language in species that we recently shared a common ancestor with. © 2005 Wiley-Liss, Inc. [source] Genoarchitectonic profile of developing nuclear groups in the chicken pretectumTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2009J.L. Ferran Abstract Earlier results on molecularly coded progenitor domains in the chicken pretectum revealed an anteroposterior subdivision of the pretectum in precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) histogenetic areas, each specified differentially (Ferran et al. [2007] J Comp Neurol 505:379,403). Here we examined the nuclei derived from these areas with regard to characteristic gene expression patterns and gradual histogenesis (eventually, migration patterns). We sought a genoarchitectonic schema of the avian pretectum within the prosomeric model of the vertebrate forebrain (Puelles and Rubenstein [2003] Trends Neurosci 26:469,476; Puelles et al. [2007] San Diego: Academic Press). Transcription-factor gene markers were used to selectively map derivatives of the three pretectal histogenetic domains: Pax7 and Pax6 (CoP); FoxP1 and Six3 (JcP); and FoxP2, Ebf1, and Bhlhb4 (PcP). The combination of this genoarchitectonic information with additional data on Lim1, Tal2, and Nbea mRNA expression and other chemoarchitectonic results allowed unambiguous characterization of some 30 pretectal nuclei. Apart from grouping them as derivatives of the three early anteroposterior domains, we also assigned them to postulated dorsoventral subdomains (Ferran et al. [2007]). Several previously unknown neuronal populations were detected, thus expanding the list of pretectal structures, and we corrected some apparently confused concepts in the earlier literature. The composite gene expression map represents a substantial advance in anatomical and embryological knowledge of the avian pretectum. Many nuclear primordia can be recognized long before the mature differentiated state of the pretectum is achieved. This study provides fundamental notions for ultimate scientific study of the specification and regionalization processes building up this brain area, both in birds and other vertebrates. J. Comp. Neurol. 517:405,451, 2009. © 2009 Wiley-Liss, Inc. [source] Time course and nature of brain atrophy in the MRL mouse model of central nervous system lupusARTHRITIS & RHEUMATISM, Issue 6 2009John G. Sled Objective Similar to patients with systemic lupus erythematosus, autoimmune MRL/lpr mice spontaneously develop behavioral deficits and pathologic changes in the brain. Given that the disease-associated brain atrophy in this model is not well understood, the present study was undertaken to determine the time course of morphometric changes in major brain structures of autoimmune MRL/lpr mice. Methods Computerized planimetry and high-resolution magnetic resonance imaging (MRI) were used to compare the areas and volumes of brain structures in cohorts of mice that differ in severity of lupus-like disease. Results A thinner cerebral cortex and smaller cerebellum were observed in the MRL/lpr substrain, even before severe autoimmunity developed. With progression of the disease, the brain area of coronal sections became smaller and the growth of the hippocampus was retarded, which likely contributed to the increase in the ventricle area:brain area ratio. MRI revealed reduced volume across different brain regions, with the structures in the vicinity of the ventricular system particularly affected. The superior colliculus, periaqueductal gray matter, pons, and midbrain were among the regions most affected, whereas the volumes of the parietal-temporal lobe, parts of the cerebellum, and lateral ventricles in autoimmune MRL/lpr mice were comparable with values in congenic controls. Conclusion These results suggest that morphologic alterations in the brains of MRL/lpr mice are a consequence of several factors, including spontaneous development of lupus-like disease. A periventricular pattern of parenchymal damage is consistent with the cerebrospinal fluid neurotoxicity, limbic system pathologic features, and deficits in emotional reactivity previously documented in this model. [source] Dynamic bicultural brains: fMRI study of their flexible neural representation of self and significant others in response to culture primesASIAN JOURNAL OF SOCIAL PSYCHOLOGY, Issue 2 2010Sik Hung Ng Where in the brain are the self and significant others (e.g. mother) represented? Neuroscientists have traced self-representation to the ventral medial prefrontal cortex for both Westerners and East Asians. However, significant others were represented alongside the self in the same brain area for East Asians but not for Westerners. In this experiment, Westernized bicultural Chinese were scanned using functional magnetic resonance imaging while performing trait judgments that referenced the self, mother, or a non-identified person (NIP) after Western or Chinese culture priming. Consistent with Western independent self-construals and Chinese interdependent self-construals, Western priming increased, whereas Chinese priming decreased the neural differentiation of mother and NIP from self. [source] Comparison of the Effects of Deramciclane, Ritanserin and Buspirone on Extracellular Dopamine and Its Metabolites in Striatum and Nucleus Accumbens of Freely Moving RatsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2008Tiina M. Kääriäinen Dual probe in vivo microdialysis in freely moving rats was used to compare the effects of graded doses of deramciclane fumarate (3, 10 and 30 mg/kg), 5-HT2A/C antagonist ritanserin (1 mg/kg) and a partial 5-HT1A agonist buspirone hydrochloride (5 mg/kg) on the extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in nucleus accumbens and striatum assayed by high performance liquid chromatography with electrochemical detection. The indirect dopamine agonist, D-amphetamine sulfate (2 mg/kg), was used as a positive control. Ritanserin, buspirone and deramciclane 3 and 10 mg/kg had no significant effects on the extracellular dopamine levels in either brain area but deramciclane 30 mg/kg significantly increased accumbal dopamine as well as DOPAC and HVA in both brain areas. As expected, the positive control D-amphetamine significantly increased both striatal and accumbal dopamine levels. The effects of buspirone or the highest deramciclane dose and D-amphetamine on DOPAC and HVA levels were opposite; buspirone and deramciclane increased while D-amphetamine decreased the metabolite levels in both brain areas. The results indicate that a single high dose of deramciclane has the neuroleptic- or buspirone-like effect, particularly in mesolimbic regions. There is at least a 5-fold margin between the anxiolytic and neuroleptic doses of deramciclane in the rat. [source] Neurotoxic Effects of Three Fractions Isolated from Tityus serrulatus Scorpion VenomBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2000Ana Leonor A. Nencioni Scorpion venoms contain low molecular weight basic polypeptides, neurotoxins, that are the principal toxic agents. These toxins act on ion channels, promoting a derangement that may result in an abnormal release of neurotransmitters. In the present study we investigated some of the effects of the F, H and J fractions isolated from Tityus serrulatus scorpion venom on the central nervous system of rodents. The venom was partially purified by gel filtration chromatography. The neurotoxic effect of these fractions was studied on convulsive activity after intravenous injection, and on electrographic activity and neuronal integrity of rat hippocampus when injected directly into this brain area. The results showed that intravenous injection of the F and H fractions induced convulsions, and intrahippocampal injection caused electrographic seizures in rats and neuronal damage in specific hippocampal areas. Fraction J injected intravenously reduced the general activity of mice in the open field but induced no changes when injected into the brain. These results suggest that scorpion toxins are able to act directly on the central nervous system promoting behavioural, electrographic and histological modifications. [source] Effects of nicotine and chlorisondamine on cerebral glucose utilization in immobilized and freely-moving ratsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2000T Marenco Chlorisondamine blocks central nicotinic receptors for many weeks via an unknown mechanism. Intracerebroventricular administration of [3H]-chlorisondamine in rats results in an anatomically restricted and persistent intracellular accumulation of radioactivity. The initial aim of the present study was to test whether nicotinic receptor antagonism by chlorisondamine is also anatomically restricted. Male adult rats were pretreated several times with nicotine to avoid the disruptive effects of the drug seen in drug-naïve animals. They then received chlorisondamine (10 ,g i.c.v.) or saline, and local cerebral glucose utilization (LCGU) was measured 4 weeks later after acute nicotine (0.4 mg kg,1 s.c.) or saline administration. During testing, rats were partially immobilized. Nicotine significantly increased LCGU in the anteroventral thalamus and in superior colliculus. Chlorisondamine completely blocked the first of these effects. Chlorisondamine significantly reduced LCGU in the lateral habenula, substantia nigra pars compacta, ventral tegmental area, and cerebellar granular layer. The second experiment was of similar design, but the rats were not pre-exposed to nicotine, and were tested whilst freely-moving. Acute nicotine significantly increased LCGU in anteroventral thalamus, superior colliculus, medial habenula and dorsal lateral geniculate. Overall, however, nicotine significantly decreased LCGU. Most or all of the central effects of nicotine on LCGU were reversed by chlorisondamine given 4 weeks beforehand. These findings suggest that chlorisondamine blocks nicotinic effects widely within the brain. They also indicate that in freely-moving rats, nicotine can reduce or stimulate cerebral glucose utilization, depending on the brain area. British Journal of Pharmacology (2000) 129, 147,155; doi:10.1038/sj.bjp.0703005 [source] Modulation and metamodulation of synapses by adenosineACTA PHYSIOLOGICA, Issue 2 2010J. A. Ribeiro Abstract The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of ,regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses. [source] Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal thresholdACTA PHYSIOLOGICA, Issue 3 2010X.-B. Gao Abstract The neuropeptide hypocretin is synthesized exclusively in the lateral hypothalamus and participates in many brain functions critical for animal survival, particularly in the promotion and maintenance of arousal in animals , a core process in animal behaviours. Consistent with its arousal-promoting role in animals, the neurones synthesizing hypocretin receive extensive innervations encoding physiological, psychological and environmental cues and send final outputs to key arousal-promoting brain areas. The activity in hypocretin neurones fluctuates and correlates with the behavioural state of animals and intensive activity has been detected in hypocretin neurones during wakefulness, foraging for food and craving for addictive drugs. Therefore, it is likely that hypocretin neurones undergo experience-dependent changes resulting from intensive activations by stimuli encoding changes in the internal and external environments. This review summarizes the most recent evidence supporting experience-dependent plasticity in hypocretin neurones. Current data suggest that nutritional and behavioural factors lead to synaptic plasticity and re-organization of synaptic architecture in hypocretin neurones. This may be the substrate of enhanced levels of arousal resulting from behavioural changes in animals and may help to explain the mechanisms underlying the changes in arousal levels induced by physiological, psychological and environmental factors. [source] Influence of metyrapone treatment during pregnancy on the development and maturation of brain monoaminergic systems in the ratACTA PHYSIOLOGICA, Issue 4 2009M. L. Leret Abstract Aim:, This study examines the effect of reducing the corticosterone levels of gestating rat dams on the postnatal development and maturation of monoaminergic systems in their offspring's brains. Methods:, Metyrapone, an inhibitor of CORT synthesis, was administered to pregnant rats from E0 to E17 of gestation. Monoamine concentrations were determined in male and female offspring at postnatal days (PN) 23 and 90 in the hippocampus, hypothalamus and striatum. Results:, Reducing maternal corticosterone (mCORT) during gestation led to alterations in dopamine and serotonin levels in all three brain areas studied at PN 23. Alterations persisted until at least PN 90 in the serotonergic systems; the dopamine content of the hippocampus also remained modified. Reduced mCORT during gestation also led to alterations in the development and maturation of the hypothalamic noradrenergic systems. Sexually dimorphic responses were observed in all these monoaminergic systems at different times. Conclusion:, These results suggest that while they are still developing, brain monoaminergic systems are particularly sensitive to epigenetic influences. An adequate foetal level of CORT is required for the normal ontogeny of brain monoaminergic systems. The present data also provide that during the critical period of brain development, maternal CORT plays an important role in the sexual differentiation of monoaminergic systems, with particular influence on brain serotonergic neurones. [source] Physiological functions of glucose-inhibited neuronesACTA PHYSIOLOGICA, Issue 1 2009D. Burdakov Abstract Glucose-inhibited neurones are an integral part of neurocircuits regulating cognitive arousal, body weight and vital adaptive behaviours. Their firing is directly suppressed by extracellular glucose through poorly understood signalling cascades culminating in opening of post-synaptic K+ or possibly Cl, channels. In mammalian brains, two groups of glucose-inhibited neurones are best understood at present: neurones of the hypothalamic arcuate nucleus (ARC) that express peptide transmitters NPY and agouti-related peptide (AgRP) and neurones of the lateral hypothalamus (LH) that express peptide transmitters orexins/hypocretins. The activity of ARC NPY/AgRP neurones promotes food intake and suppresses energy expenditure, and their destruction causes a severe reduction in food intake and body weight. The physiological actions of ARC NPY/AgRP cells are mediated by projections to numerous hypothalamic areas, as well as extrahypothalamic sites such as the thalamus and ventral tegmental area. Orexin/hypocretin neurones of the LH are critical for normal wakefulness, energy expenditure and reward-seeking, and their destruction causes narcolepsy. Orexin actions are mediated by highly widespread central projections to virtually all brain areas except the cerebellum, including monosynaptic innervation of the cerebral cortex and autonomic pre-ganglionic neurones. There, orexins act on two specific G-protein-coupled receptors generally linked to neuronal excitation. In addition to sensing physiological changes in sugar levels, the firing of both NPY/AgRP and orexin neurones is inhibited by the ,satiety' hormone leptin and stimulated by the ,hunger' hormone ghrelin. Glucose-inhibited neurones are thus well placed to coordinate diverse brain states and behaviours based on energy levels. [source] Circuits and systems in stress.DEPRESSION AND ANXIETY, Issue 1 2002Abstract This paper follows the preclinical work on the effects of stress on neurobiological and neuroendocrine systems and provides a comprehensive working model for understanding the pathophysiology of posttraumatic stress disorder (PTSD). Studies of the neurobiology of PTSD in clinical populations are reviewed. Specific brain areas that play an important role in a variety of types of memory are also preferentially affected by stress, including hippocampus, amygdala, medial prefrontal cortex, and cingulate. This review indicates the involvement of these brain systems in the stress response, and in learning and memory. Affected systems in the neural circuitry of PTSD are reviewed (hypothalamic-pituitary-adrenal axis (HPA-axis), catecholaminergic and serotonergic systems, endogenous benzodiazepines, neuropeptides, hypothalamic-pituitary-thyroid axis (HPT-axis), and neuro-immunological alterations) as well as changes found with structural and functional neuroimaging methods. Converging evidence has emphasized the role of early-life trauma in the development of PTSD and other trauma-related disorders. Current and new targets for systems that play a role in the neural circuitry of PTSD are discussed. This material provides a basis for understanding the psychopathology of stress-related disorders, in particular PTSD. Depression and Anxiety 16:14,38, 2002. © 2002 Wiley-Liss, Inc. [source] The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticityDEVELOPMENTAL NEUROBIOLOGY, Issue 5 2010Eero Castrén Abstract Recent evidence suggests that neuronal plasticity plays an important role in the recovery from depression. Antidepressant drugs and electroconvulsive shock treatment increase the expression of several molecules, which are associated with neuronal plasticity, in particular the neurotrophin BDNF and its receptor TrkB. Furthermore, these treatments increase neurogenesis and synaptic numbers in several brain areas. Conversely, depression, at least in its severe form, is associated with reduced volumes of the hippocampus and prefrontal cortex and in at least some cases these neurodegenerative signs can be attenuated by successful treatment. Such observations suggest a central role for neuronal plasticity in depression and the antidepressant effect, and also implicate BDNF signaling as a mediator of this plasticity. The antidepressant fluoxetine can reactivate developmental-like neuronal plasticity in the adult visual cortex, which, under appropriate environmental guidance, leads to the rewiring of a developmentally dysfunctional neural network. These observations suggest that the simple form of the neurotrophic hypothesis of depression, namely, that deficient levels of neurotrophic support underlies mood disorders and increases in these neurotrophic factors to normal levels brings about mood recovery, may not sufficiently explain the complex process of recovery from depression. This review discusses recent data on the role of BDNF and its receptors in depression and the antidepressant response and suggests a model whereby the effects of antidepressant treatments could be explained by a reactivation of activity-dependent and BDNF-mediated cortical plasticity, which in turn leads to the adjustment of neuronal networks to better adapt to environmental challenges. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 2010 [source] Distribution of progesterone receptor immunoreactivity in the midbrain and hindbrain of postnatal ratsDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2008Princy S. Quadros Abstract Nuclear steroid hormone receptors are powerful transcription factors and therefore have the potential to influence and regulate fundamental processes of neural development. The expression of progesterone receptors (PR) has been described in the developing forebrain of rats and mice, and the mammalian brain may be exposed to significant amounts of progesterone, either from maternal sources and/or de novo synthesis of progesterone from cholesterol within the brain. The present study examined the distribution of PR immunoreactive (PRir) cells within the midbrain and hindbrain of postnatal rats. The results demonstrate that PR is transiently expressed within the first 2 weeks of life in specific motor, sensory and reticular core nuclei as well as within midbrain dopaminergic cell groups such as the substantia nigra and the ventral tegmental area. Additionally, robust PRir was observed in cells of the lower rhombic lip, a transient structure giving rise to precerebellar nuclei. These results suggest that progestins and progesterone receptors may play a fundamental role in the postnatal development of numerous midbrain and hindbrain nuclei, including some areas implicated in human disorders. Additionally, these findings contribute to the increasing evidence that steroid hormones and their receptors influence neural development in a wide range of brain areas, including many not typically associated with reproduction or neuroendocrine function. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] Localization of estrogen receptor-, and -,mRNA in brain areas controlling sexual behavior in Japanese quailDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006Krister Halldin Abstract Two estrogen receptors (ERs), denoted ER, and ER,, have been identified in humans and various animal species, including the Japanese quail. Estrogens play a key role in sexual differentiation and in activation of sexual behavior in Japanese quail. The distribution of ER, in the brain of male and female adult quail has previously been studied using immunohistochemistry, whereas in situ hybridization has been employed to study the distribution of ER, mRNA in males only. In this article, we used in situ hybridization to study the distribution of mRNAs for both ER, and ER, in brain areas controlling sexual behavior of Japanese quail. Our results show that both ER, mRNA and ER, mRNA are localized in areas important for sexual behavior, such as the preoptic area and associated limbic areas, in both males and females. Moreover, we found differences in distribution of mRNA for the two receptors in these areas. The results of this article support previously reported data and provide novel data on localization of ER mRNAs in adult quail brain of both sexes. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source] Seasonal plasticity of brain aromatase mRNA expression in glia: Divergence across sex and vocal phenotypesDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2005Paul M. Forlano Abstract Although teleost fishes have the highest levels of brain aromatase (estrogen synthase) compared to other vertebrates, little is known of its regulation and function in specific brain areas. Previously, we characterized the distribution of aromatase in the brain of midshipman fish, a model system for identifying the neural and endocrine basis of vocal-acoustic communication and alternative male reproductive tactics. Here, we quantified seasonal changes in brain aromatase mRNA expression in the inter- and intrasexually dimorphic sonic motor nucleus (SMN) and in the preoptic area (POA) in males and females in relation to seasonal changes in circulating steroid hormone levels and reproductive behaviors. Aromatase mRNA expression was compared within each sex throughout non-reproductive, pre-nesting, and nesting periods as well as between sexes within each season. Intrasexual (male) differences were also compared within the nesting period. Females had higher mRNA levels in the pre-nesting period when their steroid levels peaked, while acoustically courting (type I) males had highest expression during the nesting period when their steroid levels peaked. Females had significantly higher levels of expression than type I males in all brain areas, but only during the pre-nesting period. During the nesting period, non-courting type II males had significantly higher levels of aromatase mRNA in the SMN but equivalent levels in the POA compared to type I males and females. These results demonstrate seasonal and sex differences in brain aromatase mRNA expression in a teleost fish and suggest a role for aromatase in the expression of vocal-acoustic and alternative male reproductive phenotypes. © 2005 Wiley Periodicals, Inc. J. Neurobiol, 2005 [source] The effects of social environment on adult neurogenesis in the female prairie voleDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002Christie D. Fowler Abstract In the mammalian brain, adult neurogenesis has been found to occur primarily in the subventricular zone (SVZ) and dentate gyrus of the hippocampus (DG) and to be influenced by both exogenous and endogenous factors. In the present study, we examined the effects of male exposure or social isolation on neurogenesis in adult female prairie voles (Microtus ochrogaster). Newly proliferated cells labeled by a cell proliferation marker, 5-bromo-2,-deoxyuridine (BrdU), were found in the SVZ and DG, as well as in other brain areas, such as the amygdala, hypothalamus, neocortex, and caudate/putamen. Two days of male exposure significantly increased the number of BrdU-labeled cells in the amygdala and hypothalamus in comparison to social isolation. Three weeks later, group differences in BrdU labeling generally persisted in the amygdala, whereas in the hypothalamus, the male-exposed animals had more BrdU-labeled cells than did the female-exposed animals. In the SVZ, 2 days of social isolation increased the number of BrdU-labeled cells compared to female exposure, but this difference was no longer present 3 weeks later. We have also found that the vast majority of the BrdU-labeled cells contained a neuronal marker, indicating neuronal phenotypes. Finally, group differences in the number of cells undergoing apoptosis were subtle and did not seem to account for the observed differences in BrdU labeling. Together, our data indicate that social environment affects neuron proliferation in a stimulus- and site-specific manner in adult female prairie voles. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 115,128, 2002 [source] |