Brain Activity (brain + activity)

Distribution by Scientific Domains

Kinds of Brain Activity

  • regional brain activity


  • Selected Abstracts


    ATTENTION AND MEMORY IN AUDITION: MEASUREMENTS OF BRAIN ACTIVITY AND BEHAVIOR

    PSYCHOPHYSIOLOGY, Issue 2007
    Article first published online: 14 AUG 200
    No abstract is available for this article. [source]


    AFFECTIVE AND MOTIVATIONAL PERSPECTIVES ON ERROR RELATED BRAIN ACTIVITY

    PSYCHOPHYSIOLOGY, Issue S1 2005
    Article first published online: 15 AUG 200
    No abstract is available for this article. [source]


    Script-driven imagery of self-injurious behavior in patients with borderline personality disorder: a pilot FMRI study

    ACTA PSYCHIATRICA SCANDINAVICA, Issue 1 2010
    A. Kraus
    Objective:, Self-injurious behavior (SIB) is one of the most distinctive features of borderline personality disorder (BPD) and related to impulsivity and emotional dysregulation. Method:, Female patients with BPD (n = 11) and healthy controls (n = 10) underwent functional magnetic resonance imaging while listening to a standardized script describing an act of self-injury. Experimental sections of the script were contrasted to the neutral baseline section and group-specific brain activities were compared. Results:, While imagining the reactions to a situation triggering SIB, patients with BPD showed significantly less activation in the orbitofrontal cortex compared with controls. Furthermore, only patients with BPD showed increased activity in the dorsolateral prefrontal cortex during this section and a decrease in the mid-cingulate while imagining the self-injurious act itself. Conclusion:, This pattern of activation preliminary suggests an association with diminished emotion regulation, impulse control as well as with response selection and reappraisal during the imagination of SIB. [source]


    Possible involvement of GABAergic modulation in the protective effect of gabapentin against immobilization stress-induced behavior alterations and oxidative damage in mice

    FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2007
    Anil Kumar
    Abstract Introduction Acute stress may be experienced in response to an immediate physical, emotional or psychological stimulus. Stress has been known to affect several brain activities and promote long-term changes in multiple neural systems. In the present study, we investigated the possible involvement of GABAergic modulation in the protective effect of gabapentin in acute immobilization-induced behavioral alterations and oxidative damage in mice. Materials and methods Mice were immobilized for periods of 6 h. Animals were divided into different groups, consisting of six in each. Various GABAergic modulators were administered either alone or in their combinations, 30 min before subjecting the animals for immobilization stress. Various behavioral tests (mirror chamber, actophotometer) followed by oxidative parameters (malondialdehyde level, glutathione, catalase, nitrite and protein) were assessed in animals. Results Six hours acute immobilization stress caused significant locomotor impairment, anxiety-like behavior in mice. Biochemical analyses also revealed an increase malondialdehyde, nitrite level and depletion of glutathione and catalase activity in 6 h stressed brains. Pretreatment with gabapentin (50 and 100 mg/kg, i.p.) significantly improved ambulatory movements, anti-anxiety effect (decreased time latency to enter in mirror chamber, increased number of entries and duration in mirror chamber) and antioxidative activity in stressed mice (P < 0.05). Further, picrotoxin (1.0 mg/kg) blocked and muscimol (0.05 mg/kg) potentiated the protective action of gabapentin (50 mg/kg). Results of both behavior as well as biochemical alterations in combination studies were significant as compared to their effect per se (P < 0.05). Conclusion Results of present study suggest GABAergic modulation might be involved in the protective effect of gabapentin against immobilization-induced behavior alteration and oxidative damage in mice. [source]


    Lactate efflux and the neuroenergetic basis of brain function

    NMR IN BIOMEDICINE, Issue 7-8 2001
    Robert G. Shulman
    Abstract In the unstimulated brain energy is primarily supplied by the oxidation of glucose. However the oxygen-to-glucose index (OGI), which is the ratio of metabolic rates of oxygen to glucose, CMRO2/CMRglc, diverges from the theoretical value of 6 as activity is increased. In vivo measurements of brain lactate show its concentration to increase with stimulation. The decreasing OGI with stimulation had led to the suggestion that activation, unlike resting activity, is supported by anaerobic glycolysis. To date a unifying concept that accommodates glucose oxidation at rest with lactate generation and OGI decrease during stimulation of brain is lacking. Furthermore, energetics that change with increasing activity are not consistent with a neuroenergetic model that has been proposed from 1- 13C-glucose MRS experiments. That model, based upon in vivo MRS measurements and cellular studies by Pellerin and Magistretti, showed that glutamate neurotransmitter cycling was coupled to glucose oxidation over a wide range of brain activities from rest down to deep anesthesia. Here we reconcile these paradoxical observations by suggesting that anaerobic glucose consumption (which can provide energy rapidly) increases with activation to meet the power requirements of millisecond neuronal firing. It is proposed, in accord with our neuroenergetic model, that the extra glucose mobilized rapidly for glial clearance of glutamate, is not needed for the oxidative processes that are responsible for neuronal firing and glutamate release, and consequently it is effluxed as lactate. A stoichiometric relation between OGI and lactate concentration is derived from the neuroenergetic model, showing that the enhanced glucose uptake during activation is consistent with neuronal activity being energetically supported by glucose oxidation. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Hyperfrontality in patients with schizophrenia during saccade and antisaccade tasks: A study with fMRI

    PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 2 2009
    Mai Fukumoto-Motoshita mms
    Aims:, Antisaccadic eye movements, requiring inhibition of a saccade toward a briefly appearing peripheral target, are known to be impaired in schizophrenia. Previous neuroimaging studies have indicated that patients with schizophrenia show diminished activations in the frontal cortex and basal ganglia. These studies used target fixation as a baseline condition. However, if the levels of brain activities at baseline are not compatible between patients and healthy subjects, between-group comparison on antisaccade-related activations is consequently invalidated. One possibility is that patients with schizophrenia may present with greater activation during fixation than healthy subjects. In order to examine this possibility, here we investigated brain activities associated with antisaccade in the two groups without using target fixation at baseline. Methods:, Functional brain images were acquired during prosaccades and antisaccades in 18 healthy subjects and 18 schizophrenia patients using a box-car functional magnetic resonance imaging design. Eye movements were measured during scanning. Results:, In the patient group, the elevated activities in the dorsolateral prefrontal cortex (DLPFC) and thalamus, normally seen in antisaccade tasks relative to saccade tasks, were no longer observed. Moreover, in normal subjects, activities in the DLPFC and thalamus were greater during the antisaccade task than during the saccade task. In patients, no such difference was observed between the two tasks, suggesting that these brain regions are likely to be highly activated even by a simple task such as fixation. In particular, the DLPFC and thalamus in patients were not activated at a level commensurate with the difficulty of the tasks presented. Conclusions:, From these results, it is suggested that schizophrenia entails dysfunctions in the fronto-striato-thalamo-cortical network associated with motor function control. [source]


    Structural and functional neuroimaging in Klinefelter (47,XXY) syndrome: A review of the literature and preliminary results from a functional magnetic resonance imaging study of language

    DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 4 2009
    Kyle Steinman
    Abstract Klinefelter (47,XXY) syndrome (KS), the most common form of sex-chromosomal aneuploidy, is characterized by physical, endocrinologic, and reproductive abnormalities. Individuals with KS also exhibit a cognitive/behavioral phenotype characterized by language and language-based learning disabilities and executive and attentional dysfunction in the setting of normal general intelligence. The underlying neurobiologic mechanisms are just now beginning to be elucidated through structural and functional neuroimaging. Here, we review the literature of structural and functional neural findings in KS identified by neuroimaging and present preliminary results from a functional magnetic resonance imaging study examining brain activity during a verb generation task in KS. © 2009 Wiley-Liss, Inc. Dev Disabil Res Rev 2009;15:295,308. [source]


    Attention-like processes underlying optomotor performance in a Drosophila choice maze

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2007
    Bruno van Swinderen
    Abstract The authors present a novel paradigm for studying visual responses in Drosophila. An eight-level choice maze was found to reliably segregate fly populations according to their responses to moving stripes displayed on a computer screen. Visual responsiveness was robust in wild-type flies, and performance depended on salience effects such as stimulus color and speed. Analysis of individual fly choices in the maze revealed that stereotypy, or choice persistence, contributed significantly to a strain's performance. On the basis of these observations, the authors bred wild-type flies for divergent visual phenotypes by selecting individual flies displaying extreme stereotypy. Selected flies alternated less often in the sequential choice maze than unselected flies, showing that stereotypy could evolve across generations. The authors found that selection for increased stereotypy impaired flies' responsiveness to competing stimuli in tests for attention-like behavior in the maze. Visual selective attention was further investigated by electrophysiology, and it was found that increased stereotypy also impaired responsiveness to competing stimuli at the level of brain activity. Combined results present a comprehensive approach to studying visual responses in Drosophila, and show that behavioral performance involves attention-like processes that are variable among individuals and thus sensitive to artificial selection. © 2006 Wiley Periodicals, Inc. Develop Neurobiol 67: 129,145, 2007. [source]


    A succession of anesthetic endpoints in the Drosophila brain

    DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2006
    Bruno van Swinderen
    Abstract General anesthetics abolish behavioral responsiveness in all animals, and in humans this is accompanied by loss of consciousness. Whether similar target mechanisms and behavioral endpoints exist across species remains controversial, although model organisms have been successfully used to study mechanisms of anesthesia. In Drosophila, a number of key mutants have been characterized as hypersensitive or resistant to general anesthetics by behavioral assays. In order to investigate general anesthesia in the Drosophila brain, local field potential (LFP) recordings were made during incremental exposures to isoflurane in wild-type and mutant flies. As in higher animals, general anesthesia in flies was found to involve a succession of distinct endpoints. At low doses, isoflurane uncoupled brain activity from ongoing movement, followed by a sudden attenuation in neural correlates of perception. Average LFP activity in the brain was more gradually attenuated with higher doses, followed by loss of movement behavior. Among mutants, a strong correspondence was found between behavioral and LFP sensitivities, thereby suggesting that LFP phenotypes are proximal to the anesthetic's mechanism of action. Finally, genetic and pharmacological analysis revealed that anesthetic sensitivities in the fly brain are, like other arousal states, influenced by dopaminergic activity. These results suggest that volatile anesthetics such as isoflurane may target the same processes that sustain wakefulness and attention in the brain. LFP correlates of general anesthesia in Drosophila provide a powerful new approach to uncovering the nature of these processes. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 1195,1211, 2006 [source]


    The effects of age and sex on mental rotation performance, verbal performance, and brain electrical activity

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 4 2002
    Jonathan E. Roberts
    Abstract This study examined the effects of age and sex on mental rotation performance, verbal performance, and brain-wave activity. Thirty-two 8-year-olds (16 boys) and 32 college students (16 men) had EEG recorded at baseline and while performing four computerized tasks: a two-dimensional (2D) gingerbread man mental rotation, a 2D alphanumeric mental rotation, of three-dimensional (3D) basketball player mental rotation, and lexical decision making. Additionally, participants completed a paper- and pencil water level task and an oral verbal fluency task. On the 2D alphanumeric and 3D basketball player mental rotation tasks, men performed better than boys, but the performance of women and girls did not differ. On the water level task, men performed better than women whereas there was no difference between boys and girls. No sex differences were found on the 2D gingerbread man mental rotation, lexical decision-making, and verbal fluency tasks. EEG analyses indicated that men exhibited left posterior temporal activation during the 2D alphanumeric task and that men and boys both exhibited greater left parietal activation than women and girls during the 2D gingerbread man task. On the 3D basketball player mental rotation task, all participants exhibited greater activation of the right parietal area than the left parietal area. These data give insight into the brain activity and cognitive development changes that occur between childhood and adulthood. © 2002 Wiley Periodicals, Inc. Dev Psychobiol 40: 391,407, 2002. Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/dev.10039 [source]


    Testing neural models of the development of infant visual attention

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 3 2002
    John E. Richards
    Abstract Several models of the development of infant visual attention have used information about neural development. Most of these models have been based on nonhuman animal studies and have relied on indirect measures of neural development in human infants. This article discusses methods for studying a "neurodevelopmental" model of infant visual attention using indirect and direct measures of cortical activity. We concentrate on the effect of attention on eye movement control and show how animal-based models, indirect measurement in human infants, and direct measurement of brain activity inform this model. © 2002 Wiley Periodicals, Inc. Dev Psychobiol 40: 226,236, 2002. DOI 10.1002/dev.10029 [source]


    In Vivo Modulation of Hippocampal Epileptiform Activity with Radial Electric Fields

    EPILEPSIA, Issue 6 2003
    Kristen A. Richardson
    Summary: Purpose: Electric field stimulation can interact with brain activity in a subthreshold manner. Electric fields have been previously adaptively applied to control seizures in vitro. We report the first results from establishing suitable electrode geometries and trajectories, as well as stimulation and recording electronics, to apply this technology in vivo. Methods: Electric field stimulation was performed in a rat kainic acid injection seizure model. Radial electric fields were generated unilaterally in hippocampus from an axial depth electrode. Both sinusoidal and multiphasic stimuli were applied. Hippocampal activity was recorded bilaterally from tungsten microelectrode pairs. Histologic examination was performed to establish electrode trajectory and characterize lesioning. Results: Electric field modulation of epileptiform neural activity in phase with the stimulus was observed in five of six sinusoidal and six of six multiphasic waveform experiments. Both excitatory and suppressive modulation were observed in the two experiments with stimulation electrodes most centrally placed within the hippocampus. Distinctive modulation was observed in the period preceding seizure-onset detection in two of six experiments. Short-term histologic tissue damage was observed in one of six experiments associated with high unbalanced charge delivery. Conclusions: We demonstrated in vivo electric field modulation of epileptiform hippocampal activity, suggesting that electric field control of in vivo seizures may be technically feasible. The response to stimulation before seizure could be useful for triggering control systems, and may be a novel approach to define a preseizure state. [source]


    RESEARCH FOCUS ON COMPULSIVE BEHAVIOUR IN ANIMALS: Compulsive alcohol drinking in rodents

    ADDICTION BIOLOGY, Issue 4 2009
    Valentina Vengeliene
    ABSTRACT Upon prolonged alcohol exposure, the behaviour of an individual can gradually switch from controlled to compulsive. Our review is focused on the neurobiological mechanisms that might underlie this transition as well as the factors that are influencing it. Animal studies suggest that temporally increased alcohol consumption during post-abstinence drinking is accompanied by a loss of flexibility of the behaviour and therefore, could serve as a model for compulsive alcohol drinking. However, studies using different alcohol-preferring rat lines in the post-abstinence drinking model suggest that high alcohol consumption does not necessarily lead to the development of compulsive drinking. This indicates the significance of genetic predisposition to compulsive behaviour. Neuroimaging data show that chronic alcohol consumption affects the activity of several brain regions such as the extrapyramidal motor system and several areas of the prefrontal cortex including the orbitofrontal and anterior cingulate cortex. Similar changes in brain activity is seen in patients suffering from obsessive,compulsive disorder at baseline conditions and during provocation of obsessive thoughts and urge to perform compulsive-like rituals. This indicates that dysfunction of these regions may be responsible for the expression of compulsive components of alcohol drinking behaviour. Several brain neurotransmitter systems seem to be responsible for the switch from controlled to compulsive behaviour. In particular, hypofunctioning of monoaminergic systems and hyperfunctioning of glutamatergic systems may play a role in compulsive alcohol drinking. [source]


    REVIEW: Identifying the neural circuitry of alcohol craving and relapse vulnerability

    ADDICTION BIOLOGY, Issue 1 2009
    Andreas Heinz
    ABSTRACT With no further intervention, relapse rates in detoxified alcoholics are high and usually exceed 80% of all detoxified patients. It has been suggested that stress and exposure to priming doses of alcohol and to alcohol-associated stimuli (cues) contribute to the relapse risk after detoxification. This article focuses on neuronal correlates of cue responses in detoxified alcoholics. Current brain imaging studies indicate that dysfunction of dopaminergic, glutamatergic and opioidergic neurotransmission in the brain reward system (ventral striatum including the nucleus accumbens) can be associated with alcohol craving and functional brain activation in neuronal systems that process attentional relevant stimuli, reward expectancy and experience. Increased functional brain activation elicited by such alcohol-associated cues predicted an increased relapse risk, whereas high brain activity elicited by affectively positive stimuli may represent a protective factor and was correlated with a decreased prospective relapse risk. These findings are discussed with respect to psychotherapeutic and pharmacological treatment options. [source]


    Covert attention allows for continuous control of brain,computer interfaces

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2010
    Ali Bahramisharif
    Abstract While brain-computer interfaces (BCIs) can be used for controlling external devices, they also hold the promise of providing a new tool for studying the working brain. In this study we investigated whether modulations of brain activity by changes in covert attention can be used as a continuous control signal for BCI. Covert attention is the act of mentally focusing on a peripheral sensory stimulus without changing gaze direction. The ongoing brain activity was recorded using magnetoencephalography in subjects as they covertly attended to a moving cue while maintaining fixation. Based on posterior alpha power alone, the direction to which subjects were attending could be recovered using circular regression. Results show that the angle of attention could be predicted with a mean absolute deviation of 51° in our best subject. Averaged over subjects, the mean deviation was ,70°. In terms of information transfer rate, the optimal data length used for recovering the direction of attention was found to be 1700 ms; this resulted in a mean absolute deviation of 60° for the best subject. The results were obtained without any subject-specific feature selection and did not require prior subject training. Our findings demonstrate that modulations of posterior alpha activity due to the direction of covert attention has potential as a control signal for continuous control in a BCI setting. Our approach will have several applications, including a brain-controlled computer mouse and improved methods for neuro-feedback that allow direct training of subjects' ability to modulate posterior alpha activity. [source]


    Behavioural and neurobiological effects of colostrum ingestion in the newborn lamb associated with filial bonding

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2009
    David Val-Laillet
    Abstract In sheep, the onset of filial bonding relies on early intake of colostrum. The aim of our work was to describe in the newborn lamb housed with its mother the immediate post-ingestive effects of colostrum intake, in terms of behaviour and brain activity. In Experiment 1, lambs received five nasogastric infusions of colostrum, or saline, or sham intubations during the first 6 h after birth. Mother,young interactions were recorded before and after the first, third and fifth infusions. The activity of the dam and of the young, which diminished over time in all groups, was temporarily increased in both partners just after each intubation procedure. The number of high-pitched bleats was significantly lower in lambs that received colostrum than in the sham group, suggesting soothing or satiating properties of colostrum. In Experiment 2, newborn lambs received a single nasogastric infusion of colostrum or saline 4.5 h after birth, or were sham intubated. Neuronal activation was investigated 1.5 h later for maximum c-Fos activity. Infusion of colostrum and saline induced different patterns of c-Fos-like immunoreactivity in the paraventricular and supraoptic nuclei of the hypothalamus as compared with the sham group. A specific oxytocinergic/vasopressinergic (OT/VSP) cell population in the paraventricular nucleus was activated following colostrum and saline infusion, but not sham intubation. Only colostrum induced the activation of the cortical amygdala and insular cortex, two structures involved in learning, associative processes, reward and emotion. We hypothesize that filial bonding may be triggered through colostrum-rewarded learning/calming processes and that the OT/VSP system may play a role. [source]


    Computational significance of transient dynamics in cortical networks

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008
    Daniel Durstewitz
    Abstract Neural responses are most often characterized in terms of the sets of environmental or internal conditions or stimuli with which their firing rate are correlated increases or decreases. Their transient (nonstationary) temporal profiles of activity have received comparatively less attention. Similarly, the computational framework of attractor neural networks puts most emphasis on the representational or computational properties of the stable states of a neural system. Here we review a couple of neurophysiological observations and computational ideas that shift the focus to the transient dynamics of neural systems. We argue that there are many situations in which the transient neural behaviour, while hopping between different attractor states or moving along ,attractor ruins', carries most of the computational and/or behavioural significance, rather than the attractor states eventually reached. Such transients may be related to the computation of temporally precise predictions or the probabilistic transitions among choice options, accounting for Weber's law in decision-making tasks. Finally, we conclude with a more general perspective on the role of transient dynamics in the brain, promoting the view that brain activity is characterized by a high-dimensional chaotic ground state from which transient spatiotemporal patterns (metastable states) briefly emerge. Neural computation has to exploit the itinerant dynamics between these states. [source]


    A cardiac signature of emotionality

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
    Stefan Koelsch
    Abstract Human personality has brain correlates that exert manifold influences on biological processes. This study investigates relations between emotional personality and heart activity. Our data demonstrate that emotional personality is related to a specific cardiac amplitude signature in the resting electrocardiogram (ECG). Two experiments using functional magnetic resonance imaging show that this signature correlates with brain activity in the amygdala and the hippocampus during the processing of musical stimuli with emotional valence. Additionally, this cardiac signature correlates with subjective indices of emotionality (as measured by the Revised Toronto Alexithymia Scale), and with both time and frequency domain measures of the heart rate variability. The results demonstrate intricate connections between emotional personality and the heart by showing that ECG amplitude patterns provide considerably more information about an individual's emotionality than previously believed. The finding of a cardiac signature of emotional personality opens new perspectives for the investigation of relations between emotional dysbalance and cardiovascular disease. [source]


    Novelty detector neurons in the mammalian auditory midbrain

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005
    David Pérez-González
    Abstract Novel stimuli in all sensory modalities are highly effective in attracting and focusing attention. Stimulus-specific adaptation (SSA) and brain activity evoked by novel stimuli have been studied using population measures such as imaging and event-related potentials, but there have been few studies at the single-neuron level. In this study we compare SSA across different populations of neurons in the inferior colliculus (IC) of the rat and show that a subclass of neurons with rapid and pronounced SSA respond selectively to novel sounds. These neurons, located in the dorsal and external cortex of the IC, fail to respond to multiple repetitions of a sound but briefly recover their excitability when some stimulus parameter is changed. The finding of neurons that respond selectively to novel stimuli in the mammalian auditory midbrain suggests that they may contribute to a rapid subcortical pathway for directing attention and/or orienting responses to novel sounds. [source]


    Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
    J. P. Kuhtz-Buschbeck
    Abstract Kinesthetic motor imagery and actual execution of movements share a common neural circuitry. Functional magnetic resonance imaging was used in 12 right-handed volunteers to study brain activity during motor imagery and execution of simple and complex unimanual finger movements of the dominant and the nondominant hand. In the simple task, a flexible object was rhythmically compressed between thumb, index and middle finger. The complex task was a sequential finger-to-thumb opposition movement. Premotor, posterior parietal and cerebellar regions were significantly more active during motor imagery of complex movements than during mental rehearsal of the simple task. In 10 of the subjects, we also used transcranial magnetic brain stimulation to examine corticospinal excitability during the same motor imagery tasks. Motor-evoked potentials increased significantly over values obtained in a reference condition (visual imagery) during imagery of the complex, but not of the simple movement. Imagery of finger movements of either hand activated left dorsal and ventral premotor areas and the supplementary motor cortex regardless of task complexity. The effector-independent activation of left premotor areas was particularly evident in the simple motor imagery task and suggests a left hemispherical dominance for kinesthetic movement representations in right-handed subjects. [source]


    Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001

    Abstract Modulation of cortico-cortical connectivity in specific neural circuits might underlie some of the behavioural effects observed following repetitive transcranial magnetic stimulation (rTMS) of the human frontal cortex. This possibility was tested by applying rTMS to the left mid-dorsolateral frontal cortex (MDL-FC) and subsequently measuring functional connectivity of this region with positron emission tomography (PET) and TMS. The results showed a strong rTMS-related modulation of brain activity in the fronto-cingulate circuit. These results were confirmed in a parallel experiment in the rat using electrical stimulation and field-potential recordings. Future studies are needed to provide a direct link between the rTMS-induced modulation of cortical connectivity and its effects on specific behaviours. [source]


    Selective activation of the ventrolateral prefrontal cortex in the human brain during active retrieval processing

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001
    Genevičve Cadoret
    Abstract The present study examined the role of the prefrontal cortex in retrieval processing using functional magnetic resonance imaging in human subjects. Ten healthy subjects were scanned while they performed a task that required retrieval of specific aspects of visual information. In order to examine brain activity specifically associated with retrieval, we designed a task that had retrieval and control conditions that were perfectly matched in terms of depth of encoding, decision making and postretrieval monitoring and differed only in terms of whether retrieval was required. In the retrieval condition, based on an instructional cue, the subjects had to retrieve either the particular stimulus that was previously presented or its location. In the control condition, the cue did not instruct retrieval but shared with the instructional cues the function of alerting the subjects of the impending test phase. The comparison of activity between the retrieval and control conditions demonstrated a significant and selective increase in activity related to retrieval processes within the ventrolateral prefrontal cortical region, more specifically within area 47/12. These activity increases were bilateral but stronger in the right hemisphere. The present study by strictly controlling the level of encoding, postretrieval monitoring, and decision making has demonstrated a specific increase in the ventrolateral prefrontal region that could be clearly related to active retrieval processing, i.e. the active selection of particular stored visual representations. [source]


    Differential amygdala responses to winning and losing: a functional magnetic resonance imaging study in humans

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2000
    Tiziana Zalla
    Abstract The amygdala has been shown to respond to many distinct types of affective stimuli, including reward and punishment feedback in animals. In humans, winning and losing situations can be considered as reward and punishment experiences, respectively. In this study, we used functional magnetic resonance imaging (fMRI) to measure regional brain activity when human subjects were given feedback on their performance during a simple response time task in a fictitious competitive tournament. Lexical stimuli were used to convey positive ,win' or negative ,lose' feedback. The frequency of positive and negative trials was parametrically varied by the experimenters independently from the subjects' actual performance and unbeknownst to them. The results showed that the parametric increase of winning was associated with left amygdala activation whereas the parametric increase of losing was associated with right amygdala activation. These findings provide functional evidence that the human amygdala differentially responds to changes in magnitude of positive or negative reinforcement conveyed by lexical stimuli. [source]


    Increased cerebral activity in Parkinson's disease patients carrying the DRD2 TaqIA A1 allele during a demanding motor task: a compensatory mechanism?

    GENES, BRAIN AND BEHAVIOR, Issue 6 2007
    D. Bartrés-Faz
    Previous studies suggest that neuroimaging techniques are useful for detecting the effects of functional genetic polymorphisms on brain function in healthy subjects or in patients presenting with psychiatric or neurodegenerative conditions. Former evidence showed that individuals carrying risk alleles displayed broader patterns of brain activity during behavioural and cognitive tasks, despite being clinically comparable to non-carriers. This suggests the presence of compensatory brain mechanisms. In the present study, we investigated this effect in Parkinson's disease (PD) patients carrying the DRD2 TaqIA A1 allelic variant. This variant may confer an increased risk of developing the disease and/or influence the clinical presentation. During a complex sequential motor task, we evidenced by functional magnetic resonance imaging that A1 allele carriers activated a larger network of bilateral cerebral areas than non-carriers, including cerebellar and premotor regions. Both groups had similar clinical and demographic measures. In addition, their motor performance during the functional magnetic resonance experiment was comparable. Therefore, our conclusions, pending replication in a larger sample, seem to reflect the recruitment of compensatory cerebral resources during motor processing in PD patients carrying the A1 allele. [source]


    Word imageability affects the hippocampus in recognition memory

    HIPPOCAMPUS, Issue 6 2005
    Peter Klaver
    Abstract Concrete words, whose meanings are readily imagined, are better remembered than abstract words. However, the neural correlates of this effect are poorly understood. Here, we investigated the effect of imageability on brain activity in the medial temporal lobe (MTL) processes underlying recognition memory. We recorded event-related potentials (ERPs) via depth electrodes from within the MTL in 14 patients with drug-resistant epilepsy. Patients performed a continuous word recognition task with words of high and low imageability (controlled for word frequency). Behaviorally, recognition performance was better for high, compared to low, imageable words. Two ERP components associated with recognition memory, the AMTL-N400 and the hippocampal late negative component, showed an old/new effect, but only the hippocampal P600 showed a main effect of imageability. We suggest that the hippocampal effect of imageability in recognition memory may be associated with conceptual or pictorial information processing of concrete words. © 2005 Wiley-Liss, Inc. [source]


    Imaging genetics and development: Challenges and promises

    HUMAN BRAIN MAPPING, Issue 6 2010
    B.J. Casey
    Abstract Excitement with the publication of the human genome has served as catalyst for scientists to uncover the functions of specific genes. The main avenues for understanding gene function have been in behavioral genetics on one end and on the other end, molecular mouse models. Attempts to bridge these approaches have used brain imaging to conveniently link anatomical abnormalities seen in knockout/transgenic mouse models and abnormal patterns of brain activity seen in humans. Although a convenient approach, this article provides examples of challenges for imaging genetics, its application to developmental questions, and promises for future directions. Attempts to link genes, brain, and behavior using behavioral genetics, imaging genetics, and mouse models of behavior are described. Each of these approaches alone, provide limited information on gene function in complex human behavior, but together, they are forming bridges between animal models and human psychiatric disorders. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


    Primary and multisensory cortical activity is correlated with audiovisual percepts

    HUMAN BRAIN MAPPING, Issue 4 2010
    Margo McKenna Benoit
    Abstract Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


    Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient-processing theory

    HUMAN BRAIN MAPPING, Issue 4 2010
    Daniel E. Callan
    Abstract Spaced presentations of to-be-learned items during encoding leads to superior long-term retention over massed presentations. Despite over a century of research, the psychological and neural basis of this spacing effect however is still under investigation. To test the hypotheses that the spacing effect results either from reduction in encoding-related verbal maintenance rehearsal in massed relative to spaced presentations (deficient processing hypothesis) or from greater encoding-related elaborative rehearsal of relational information in spaced relative to massed presentations (encoding variability hypothesis), we designed a vocabulary learning experiment in which subjects encoded paired-associates, each composed of a known word paired with a novel word, in both spaced and massed conditions during functional magnetic resonance imaging. As expected, recall performance in delayed cued-recall tests was significantly better for spaced over massed conditions. Analysis of brain activity during encoding revealed that the left frontal operculum, known to be involved in encoding via verbal maintenance rehearsal, was associated with greater performance-related increased activity in the spaced relative to massed condition. Consistent with the deficient processing hypothesis, a significant decrease in activity with subsequent episodes of presentation was found in the frontal operculum for the massed but not the spaced condition. Our results suggest that the spacing effect is mediated by activity in the frontal operculum, presumably by encoding-related increased verbal maintenance rehearsal, which facilitates binding of phonological and word level verbal information for transfer into long-term memory. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


    Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity

    HUMAN BRAIN MAPPING, Issue 2 2010
    Petra J. van Houdt
    Abstract EEG correlated functional MRI (EEG-fMRI) allows the delineation of the areas corresponding to spontaneous brain activity, such as epileptiform spikes or alpha rhythm. A major problem of fMRI analysis in general is that spurious correlations may occur because fMRI signals are not only correlated with the phenomena of interest, but also with physiological processes, like cardiac and respiratory functions. The aim of this study was to reduce the number of falsely detected activated areas by taking the variation in physiological functioning into account in the general linear model (GLM). We used the photoplethysmogram (PPG), since this signal is based on a linear combination of oxy- and deoxyhemoglobin in the arterial blood, which is also the basis of fMRI. We derived a regressor from the variation in pulse height (VIPH) of PPG and added this regressor to the GLM. When this regressor was used as predictor it appeared that VIPH explained a large part of the variance of fMRI signals acquired from five epilepsy patients and thirteen healthy volunteers. As a confounder VIPH reduced the number of activated voxels by 30% for the healthy volunteers, when studying the generators of the alpha rhythm. Although for the patients the number of activated voxels either decreased or increased, the identification of the epileptogenic zone was substantially enhanced in one out of five patients, whereas for the other patients the effects were smaller. In conclusion, applying VIPH as a confounder diminishes physiological noise and allows a more reliable interpretation of fMRI results. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


    Individual sensitivity to pain expectancy is related to differential activation of the hippocampus and amygdala

    HUMAN BRAIN MAPPING, Issue 2 2010
    Michal Ziv
    Abstract Anxiety arising during pain expectancy can modulate the subjective experience of pain. However, individuals differ in their sensitivity to pain expectancy. The amygdale and hippocampus were proposed to mediate the behavioral response to aversive stimuli. However, their differential role in mediating anxiety-related individual differences is not clear. Using fMRI, we investigated brain activity during expectancy to cued or uncued thermal pain applied to the wrist. Following each stimulation participants rated the intensity of the painful experience. Activations in the amygdala and hippocampus were examined with respect to individual differences in harm avoidance (HA) personality trait, and individual sensitivity to expectancy, (i.e. response to cued vs. uncued painful stimuli). Only half of the subjects reported on cued pain as being more painful than uncued pain. In addition, we found a different activation profile for the amygdala and hippocampus during pain expectancy and experience. The amygdala was more active during expectancy and this activity was correlated with HA scores. The hippocampal activity was equally increased during both pain expectancy and experience, and correlated with the individual's sensitivity to expectancy. Our findings suggest that the amygdala supports an innate tendency to approach or avoid pain as reflected in HA trait, whereas the hippocampus mediates the effect of context possibly via appraisal of the stimulus value. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]