Bryophyte Species (bryophyte + species)

Distribution by Scientific Domains


Selected Abstracts


Species richness,standing crop relationship in stream bryophyte communities: patterns across multiple scales

JOURNAL OF ECOLOGY, Issue 1 2001
Risto Virtanen
Summary 1,We tested for a unimodal (,hump-backed') relationship between species richness and standing crop at various spatial scales in stream bryophyte communities. Bryophyte species and their biomasses were determined from 20 to 25 quadrats in eight river and six stream sites in northern Finland. 2,Regression analyses revealed a quadratic relationship between richness and biomass in only two of the river sites and a positive correlation in one other. A quadratic relationship was detected in three stream sites and richness increased linearly with biomass in another. 3,We also tested for the hump-shaped pattern across individual stream boulders, representing an elevational gradient from continuously submerged to permanently dry conditions, with an intermediate zone with fluctuating water level. 4,Species richness-standing crop relationship conformed to the hump-backed model only when samples from all three microhabitats were included in the analysis. A significant positive correlation occurred in the exposed low biomass end of the gradient which is characterized by semi-aquatic species, whereas the relationship tended to be negative in permanently submerged areas with high biomass of large canopy-forming species. Quadrats close to the water level had intermediate standing crop and highest species richness. 5,Species dominant at either end of the gradient appeared unable to monopolize space in the intermediate zone where disturbances (e.g. scouring by ice) detach mosses from the substratum, creating vacant gaps for colonization. The unimodal relationship between richness and biomass is likely to occur only in streams that contain large boulders protruding above the water line, thus providing scope for community diversification along very short vertical distances. [source]


PHYLOGEOGRAPHIC STRUCTURE AND CRYPTIC SPECIATION IN THE TRANS-ANTARCTIC MOSS PYRRHOBRYUM MNIOIDES

EVOLUTION, Issue 2 2003
Stuart F. McDaniel
Abstract Many bryophyte species have distributions that span multiple continents. The hypotheses historically advanced to explain such distributions rely on either long-distance spore dispersal or slow rates of morphological evolution following ancient continental vicariance events. We use phylogenetic analyses of DNA sequence variation at three chloroplast loci (atpB-rbcL spacer, rps4 gene, and trnL intron and 3,spacer) to examine these two hypotheses in the trans-Antarctic moss Pyrrhobryum mnioides. We find: (1) reciprocal monophyly of Australasian and South American populations, indicating a lack of intercontinental dispersal; (2) shared haplotypes between Australia and New Zealand, suggesting recent or ongoing migration across the Tasman Sea; and (3) reciprocal monophyly among Patagonian and neotropical populations, suggesting no recent migration along the Andes. These results corroborate experimental work suggesting that spore features may be critical determinants of species range. We use the mid-Miocene development of the Atacama Desert, 14 million years ago, to calibrate a molecular clock for the tree. The age of the trans-Antarctic disjunction is estimated to be 80 million years ago, consistent with Gondwanan vicariance, making it among the most ancient documented cases of cryptic speciation. These data are in accord with niche conservatism, but whether the morphological stasis is a product of stabilizing selection or phylogenetic constraint is unknown. [source]


Phytogeography of the bryophyte floras of oak forests and páramo of the Cordillera de Talamanca, Costa Rica

JOURNAL OF BIOGEOGRAPHY, Issue 9 2005
Ingo Holz
Abstract Aim, Central America is a biogeographically interesting area because of its location between the rich and very different biota of North and South America. We aim to assess phytogeographical patterns in the bryophyte floras of oak forests and páramo of the Cordillera de Talamanca, Costa Rica. Location, Tropical America, in particular the montane area of Cordillera de Talamanca, Costa Rica. Methods, The analysis is based on a new critical inventory of the montane bryophyte flora of Cordillera de Talamanca. All species were assigned to phytogeographical elements on the basis of their currently known distribution. Absolute and percentage similarities were employed to evaluate floristic affinities. Results, A total of 401 species [191 hepatics (liverworts), one hornwort, 209 mosses] are recorded; of these, 251 species (128 hepatics, one hornwort, 122 mosses) occur in oak forests. Ninety-three per cent of all oak forest species are tropical in distribution, the remaining 7% are temperate (4%) and cosmopolitan (3%) species. The neotropical element includes almost 74% of the species, the wide tropical element (pantropical, amphi-atlantic, amphi-pacific) only 19%. A significant part of the neotropical species from oak forests are species with tropical Andean-centred ranges (27%). As compared with bryophyte species, vascular plant genera in the study region are represented by fewer neotropical, more temperate and more amphi-pacific taxa. Bryophyte floras of different microhabitats within the oak forest and epiphytic bryophyte floras on Quercus copeyensis in primary, early secondary and late secondary oak forest show a similar phytogeographical make-up to the total oak forest bryophyte flora. Comparison of oak forest and páramo reveals a greater affinity of the páramo bryophyte flora to temperate regions and the great importance of the páramo element in páramo. Surprisingly, oak forests have more Central American endemics than páramo. Main conclusions, (1) Providing first insights into the phytogeographical patterns of the bryophyte flora of oak forests and páramo, we are able to confirm general phytogeographical trends recorded from vascular plant genera of the study area although the latter were more rich in temperate taxa. (2) Andean-centred species are a conspicuous element in the bryophyte flora of Cordillera de Talamanca, reflecting the close historical connection between the montane bryophyte floras of Costa Rica and South America. (3) High percentages of Central American endemics in the bryophyte flora of the oak forests suggest the importance of climatic changes associated with Pleistocene glaciations for allopatric speciation. [source]


Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 5 2009
Jochen HEINRICHS
Abstract, More than 200 research papers on the molecular phylogeny and phylogenetic biogeography of bryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex genetic structure of morphologically circumscribed bryophytes, and raised reservations against many morphologically justified species concepts, especially within the mosses. However, many molecular studies allowed for corrections and modifications of morphological classification schemes. Several studies reported that the phylogenetic structure of disjunctly distributed bryophyte species reflects their geographical ranges rather than morphological disparities. Molecular data led to new appraisals of distribution ranges and allowed for the reconstruction of refugia and migration routes. Intercontinental ranges of bryophytes are often caused by dispersal rather than geographical vicariance. Many distribution patterns of disjunct bryophytes are likely formed by processes such as short distance dispersal, rare long distance dispersal events, extinction, recolonization and diversification. [source]


New chloroplast primers for intraspecific variation in Dicranum scoparium Hedw. (Dicranaceae) and amplification success in other bryophyte species

MOLECULAR ECOLOGY RESOURCES, Issue 4 2010
A. LANG
Abstract Primers for four loci that amplify cpDNA regions have been designed for population genetic analyses in Dicranum scoparium Hedw. and compared with trnL(UAA)5,exon- trnF. All loci showed intraspecific variation with a number of haplotypes ranging between two and six. trnH- psbADic showed an intercontinental disjunction, but no variability within the four Swiss populations surveyed, whereas the three remaining loci displayed intrapopulation variability in at least one population (rps19- rpl2, rpoB, trnT- rps4). These primers were additionally tested on 22 bryophytes and three fern species. The primers amplified mostly in mosses and liverworts, but less well in ferns, pointing to their evolutionary distance from the bryophytes. [source]


Epiphytic ferns and bryophytes of Tasmanian tree-ferns: A comparison of diversity and composition between two host species

AUSTRAL ECOLOGY, Issue 2 2005
NINA R. ROBERTS
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south-eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non-experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree-fern species, Dicksonia antarctica (soft tree-fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree-fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species. [source]