| |||
BrdU-positive Cells (brdu-positive + cell)
Selected AbstractsDevelopmental changes in cell proliferation in the auditory midbrain of the bullfrog, Rana catesbeianaDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2006Andrea Megela Simmons Abstract We examined patterns of cell proliferation in the auditory midbrain (torus semicircularis) of the bullfrog, Rana catesbeiana, over larval and early postmetamorphic development, by visualizing incorporation of 5-bromo-2,-deoxyuridine (BrdU) in cycling cells. At all developmental stages, BrdU-labeled cells were concentrated around the optic ventricle. BrdU-labeled cells also appeared within the torus semicircularis itself, in a stage-specific manner. The mitotic index, quantified as the percent of BrdU-positive cells outside the ventricular zone per total cells available for label, varied over larval development. Mitotic index was low in hatchling, early larval, and late larval stages, and increased significantly in deaf period, metamorphic climax, and froglet stages. Cell proliferation was higher in metamorphic climax than at other stages, suggesting increased cell proliferation in preparation for the transition from an aquatic to an amphibious existence. The change in mitotic index over development did not parallel the change in the total numbers of cells available for label. BrdU incorporation was additionally quantified by dot-blot assay, showing that BrdU is available for label up to 72 h postinjection. The pattern of change in cell proliferation in the torus semicircularis differs from that in the auditory medulla (dorsal medullary nucleus and superior olivary nucleus), suggesting that cell proliferation in these distinct auditory nuclei is mediated by different underlying mechanisms. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 1212,1224, 2006 [source] Neurosphere generation from dental pulp of adult rat incisorEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008Ryo Sasaki Abstract Dental pulp is a potential source of cells that can be used in cell replacement therapy for various nervous system disorders. Here we report that adult rat dental pulp cells have the ability to form neurospheres when cultured in serum-free culture medium on super-hydrophilic plates. The cells within small spheres continued to grow, and the dental pulp-derived cells generated large spheres. Sphere formation was dependent on exogenously supplied basic-fibroblast growth factor, but not on epidermal growth factor, and the formation and growth of dental pulp-derived spheres were negatively regulated by transforming growth factor-,. Plating cells that were dissociated from spheres on an adhesive substrate resulted in differentiation into Tuj1- and MAP2-positive neuronal cells. Analysis of the three-dimensional structure of dental pulp-derived spheres shows that they contained nestin-positive progenitors, Tuj1-positive neuronal cells and S100-positive glial cells. We found that spheres contained CD81 (TAPA1) and nestin double-positive cells, and identified a small population of CD81 and nestin double-positive cells in the odontoblast layer of the dental pulp. Flow cytometric analysis showed that CD81-positive cells were enriched in the spheres compared with the dental pulp tissue. Bromodeoxyuridine (BrdU) staining showed that nestin- and BrdU-positive cells were located only in the apical portion of the dental pulp, and the apical portion produced a large number of large-sized spheres. These data suggest that the CD81 and nestin double-positive cells localized in the odontoblast layer of the apical portion of the dental pulp may have the ability to grow and form neurospheres. [source] Blockade of caspase-1 increases neurogenesis in the aged hippocampusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007Carmelina Gemma Abstract Adult hippocampal neurogenesis dramatically decreases with increasing age, and it has been proposed that this decline contributes to age-related memory deficits. Central inflammation contributes significantly to the decrease in neurogenesis associated with ageing. Interleukin-1, is a proinflammatory cytokine initially synthesized as an inactive precursor that is cleaved by caspase-1 to generate the biologically active mature form. Whether IL-1, affects neurogenesis in the aged hippocampus is unknown. Here we analysed cells positive for 5-bromo-2-deoxyuridine (BrdU; 50 mg/kg) in animals in which cleavage of IL-1, was inhibited by the caspase-1 inhibitor Ac-YVAD-CMK (10 pmol). Aged (22 months) and young (4 months) rats received Ac-YVAD-CMK for 28 days intracerebroventricularly through a brain infusion cannula connected to an osmotic minipump. Starting on day 14, animals received a daily injection of BrdU for five consecutive days. Unbiased stereology analyses performed 10 days after the last injection of BrdU revealed that the total number of newborn cells generated over a 5-day period was higher in young rats than in aged rats. In addition, there was a 53% increase in the number of BrdU-labelled cells of the aged Ac-YVAD-CMK-treated rats compared to aged controls. Immunofluorescence studies were performed to identify the cellular phenotype of BrdU-labelled cells. The increase in BrdU-positive cells was not due to a change in the proportion of cells expressing neuronal or glial phenotypes in the subgranular zone. These findings demonstrate that the intracerebroventricular administration of Ac-YVAD-CMK reversed the decrease in hippocampal neurogenesis associated with ageing. [source] Hippocampal granule neuron production and population size are regulated by levels of bFGFEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002Yinghong Cheng Abstract Numerous studies of the proliferative effects of basic fibroblast growth factor (bFGF) in culture, including neonatal and adult hippocampal precursors, suggest that the factor plays a ubiquitous and life-long role in neurogenesis. In contrast, in vivo, bFGF is devoid of effects on neurons in mature hippocampus, raising the possibility that bFGF exhibits developmental stage-specific activity in the complex animal environment. To define neurogenetic effects in the newborn, a single subcutaneous injection of bFGF (20 ng/gm) was administered to postnatal day 1 (P1) rats, and hippocampal DNA content was quantified: bFGF elicited an increase in total DNA throughout adulthood, by 48% at P4, 25% at P22, and 17% at P180, suggesting that bFGF increases hippocampal cell number. To define mechanisms, bromodeoxyuridine (BrdU) was injected at P1 and mitotically labelled cells were assessed at P22: there was a twofold increase in BrdU-positive cells in the dentate granule cell layer (GCL), indicating that bFGF enhanced the generation of neurons, or neuronogenesis, from a cohort of precursors. Moreover, enhanced mitosis and survival led to a 33% increase in absolute GCL neuron number, suggesting that neuron production depends on environmental levels of bFGF. To evaluate this possibility, bFGF-knockout mice were analyzed: hippocampal DNA content was decreased at all ages examined (P3, ,42%; P21, ,28%; P360, ,18%), and total GCL neuron and glial fibrillary acidic protein (GFAP)-positive cell number were decreased by 30%, indicating that bFGF is necessary for normal hippocampal neurogenesis. We conclude that environmental levels of bFGF regulate neonatal hippocampal neurogenesis. As adult hippocampal neuronogenesis was unresponsive to bFGF manipulation in our previous study [Wagner, J.P., Black, I.B. & DiCicco-Bloom, E. (1999) J. Neurosci., 19, 6006], these observations suggest distinct, stage-specific roles of bFGF in the dentate gyrus granule cell lineage. [source] Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-,B and induction of apoptosisINTERNATIONAL JOURNAL OF CANCER, Issue 3 2009Paolo Onori Abstract Caffeic acid phenethyl ester (CAPE) inhibits the growth of tumor cells and is a known inhibitor of nuclear factor kappa beta (NF-,B), which is constitutively active in cholangiocarcinoma (CCH) cells. We evaluated the effects of CAPE on CCH growth both in vitro and in vivo. Inhibition of NF-,B DNA-binding activity was confirmed in nuclear extracts treated with CAPE at 50, 40 and 20 ,M. CAPE decreases the expression of NF-,B1 (p50) and RelA (p65). CAPE decreased the growth of a number of CCH cells but not normal cholangiocytes. Cell cycle decrease was seen by a decrease in PCNA protein expression and the number of BrdU-positive cells treated with CAPE at 20 ,M compared to vehicle. Inhibition of growth and increased cell cycle arrest of Mz-ChA-1 cells by CAPE were coupled with increased apoptosis. Bax expression was increased, whereas Bcl-2 was decreased in cells treated with CAPE compared to vehicle. In vivo studies were performed in BALB/c nude (nu/nu) mice implanted subcutaneously with Mz-ChA-1 cells and treated with daily IP injections of DMSO or CAPE (10 mg/kg body weight in DMSO) for 77 days. Tumor growth was decreased and tumor latency was increased 2-fold in CAPE compared to vehicle-treated nude mice. In tumor samples, decreased CCH growth by CAPE was coupled with increased apoptosis. CAPE both in vivo and in vitro decreases the growth of CCH cells by increasing apoptosis. These results demonstrate that CAPE might be an important therapeutic tool in the treatment of CCH. © 2009 UICC [source] Neurogenesis in a rat model of age-related cognitive declineAGING CELL, Issue 4 2004J. L. Bizon Summary Age-related decrements in hippocampal neurogenesis have been suggested as a basis for learning impairment during aging. In the current study, a rodent model of age-related cognitive decline was used to evaluate neurogenesis in relation to hippocampal function. New hippocampal cell survival was assessed approximately 1 month after a series of intraperitoneal injections of 5-bromo-2,-deoxyuridine (BrdU). Correlational analyses between individual measures of BrdU-positive cells and performance on the Morris water maze task provided no indication that this measure of neurogenesis was more preserved in aged rats with intact cognitive abilities. On the contrary, among aged rats, higher numbers of BrdU-positive cells in the granule cell layer were associated with a greater degree of impairment on the learning task. Double-labelling studies confirmed that the majority of the BrdU+ cells were of the neuronal phenotype; the proportion of differentiated neurons was not different across a broad range of cognitive abilities. These data demonstrate that aged rats that maintain cognitive function do so despite pronounced reductions in hippocampal neurogenesis. In addition, these findings suggest the interesting possibility that impaired hippocampal function is associated with greater survival of newly generated hippocampal neurons at advanced ages. [source] Environmental enrichment stimulates progenitor cell proliferation in the amygdalaJOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2009Hiroaki Okuda Abstract Enriched environments enhance hippocampal neurogenesis, synaptic efficacy, and learning and memory functions. Recent studies have demonstrated that enriched environments can restore learning behavior and long-term memory after significant brain atrophy and neural loss. Emotional and anxiety-related behaviors were also improved by enriched stimuli, but the effect of enriched environments on the amygdala, one of the major emotion-related structures in the central nervous system, remains largely unknown. In this study, we have focused on the effects of an enriched environment on cell proliferation and differentiation in the murine amygdala. The enriched environment increased bromodeoxyuridine (BrdU)-positive (newborn) cell numbers in the amygdala, almost all of which, immediately after a 1-week period of enrichment, expressed the oligodendrocyte progenitor marker Olig2. Furthermore, enriched stimuli significantly suppressed cell death in the amygdala. Some of the BrdU-positive cells in mice exposed to the enriched environment, but none in animals housed in the standard environment, later differentiated into astrocytes. Our findings, taken together with previous behavioral studies, suggest that progenitor proliferation and differentiation in the amygdala may contribute to the beneficial aspects of environmental enrichment such as anxiolytic effects. © 2009 Wiley-Liss, Inc. [source] Relationship between post-traumatic stress disorder-like behavior and reduction of hippocampal 5-bromo-2,-deoxyuridine-positive cells after inescapable shock in ratsPSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 6 2008Akihito Kikuchi md Aim:, Inescapable shocks (IS) have been reported to reduce the number of 5-bromo-2,-deoxyuridine (BrdU)-positive cells in hippocampus. Antidepressants prevent this reduction, and the role of neurogenesis in depression is now suggested. It has been reported, however, that the number of BrdU-positive cells was not different between the rats that developed learned helplessness and those that did not. This suggests that reduction of neurogenesis does not constitute a primary etiology of depression. It has been previously shown that IS can cause various post-traumatic stress disorder (PTSD)-like behavioral changes in rats. The aim of the present was therefore to examined whether the reduction of BrdU-positive cells relates to any PTSD-like behavioral changes in this paradigm. Methods:, Rats were given either inescapable foot-shocks (IS) or not shocked (non-S) treatment in a shuttle box on day 1 and received BrdU injections once daily during the first week after IS/non-S treatment. On day 14, rats treated with IS and non-S were given an avoidance/escape test in the shuttle box and dorsal hippocampal SGZ were analyzed by BrdU immunohistochemistry. Results:, In accordance with previously reported results, IS loading resulted in fewer BrdU-positive cells in the hippocampal subgranular zone (SGZ). Furthermore, in the IS-treated group, the number of BrdU-positive cells in the hippocampal SGZ was negatively correlated at a significant level with several hyperactive behavioral parameters but not with hypoactive behavioral parameters. Earlier findings had indicated that chronic selective serotonin re-uptake inhibitor administration, which is known to increase hippocampal neurogenesis, restored the increase in hypervigilant/hyperarousal behavior but did not attenuate the increase in numbing/avoidance behavior. Conclusion:, The regulatory mechanism responsible for the decreased proliferation and survival of cells in the hippocampus may be related to the pathogenic processes of hypervigilance/hyperarousal behaviors. [source] Protection of the Peyer's patch-associated crypt and villus epithelium against methotrexate-induced damage is based on its distinct regulation of proliferationTHE JOURNAL OF PATHOLOGY, Issue 1 2002Ingrid B. Renes Abstract The crypt and villus epithelium associated with Peyer's patches (PPs) is largely spared from methotrexate (MTX)-induced damage, compared with the non-patch (NP) epithelium. To assess the mechanism(s) preventing damage to the PP epithelium after MTX treatment, epithelial proliferation, apoptosis, and cell functions were studied in a rat-MTX model. Small intestinal segments containing PPs were excised after MTX treatment. Epithelial proliferation and apoptosis were assessed by detection of incorporated BrdU and cleaved caspase-3, respectively. Epithelial functions were determined by the expression of cell type-specific gene products at mRNA and protein level. Before and after MTX treatment, the number of BrdU-positive cells was higher in PP crypts than in NP crypts. BrdU incorporation was diminished in NP crypts, while in PP crypts incorporation was hardly affected. In PP and NP crypts, similar and increased levels of cleaved caspase-3-positive cells were observed after MTX. The enterocyte markers, sucrase-isomaltase, sodium-glucose co-transporter 1, glucose transporters 2 and 5, and intestinal and liver fatty acid binding protein, were down-regulated after MTX in NP epithelium but not in PP epithelium. In contrast, expression of the goblet cell markers, Muc2 and trefoil factor 3, and the Paneth cell marker, lysozyme, was maintained after MTX in both PP and NP epithelium. In conclusion, as MTX-induced apoptosis was similar in PP and NP crypts, the protection of the PP epithelium seems to be based on differences in the regulation of epithelial proliferation. Enterocyte function in the PP epithelium was unaffected by MTX treatment. Goblet and Paneth cell function was maintained in both NP and PP epithelium. Copyright © 2002 John Wiley & Sons, Ltd. [source] Epithelial Cell Proliferation and Apoptosis in the Developing Murine Palatal RugaeANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2002M. TAKANOSU Epithelial cell proliferation and apoptosis during morphogenesis of the murine palatal rugae (PR) were examined histochemically by using anti-bromodeoxyuridine (BrdU) and the terminal deoxynucleotidyl transferase-mediated UTP nick-end-labelling (TUNEL) technique. Formation of the PR rudiment was observed as an epithelial placode in fetuses at 12.5 days post-coitus (dpc). During the PR formation, BrdU-positive cells were detected mainly in the epithelium of the interplacode and interprotruding areas in fetuses administered BrdU maternally at 2 h before killing. TUNEL-positive cells were detected only at the epithelial placode area in 12.5,14.5 dpc. At 16.5,18.5 dpc, the BrdU-positive cells were decreased in number in the epithelial cells at the interprotruding area of the PR. Only a few TUNEL-positive cells were observed in the protruding area of the PR at 16.5 dpc. These results suggest that cell proliferation and apoptosis in the palatal epithelium are involved spatiotemporally in the murine PR morphogenesis. [source] Effects of local delivery of trapidil on neointima formation in a rabbit angioplasty modelBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2000Kai Zacharowski Smooth muscle cell (SMC) proliferation can result in luminal reduction of a vessel following balloon angioplasty. This study was designed (i) to determine if local administration of trapidil (triazolopyrimidine) into a vessel wall reduces neointima formation, and (ii) to explore the mechanism involved in the subsequent reduction in cell proliferation. Following balloon angioplasty in 40 anaesthetized New Zealand White rabbits, trapidil (50,200 mg) or its vehicle (saline) was injected into the dilated vessel wall of the right femoral artery. Experimental groups and time of investigation: (I) vehicle (2 weeks, n=3), (II) trapidil-100 mg (2 weeks, n=3), (III) vehicle (3 weeks, n=8), (IV) trapidil-50 mg (3 weeks, n=5); (V) trapidil-100 mg (3 weeks, n=9) or (V) trapidil-200 mg (3 weeks, n=7). After 2 weeks, there was a significant reduction of intimal hyperplasia (expressed as intima to media area ratio) in the trapidil group compared with vehicle (0.44±0.04 vs 0.93±0.04, *P<0.05) and also a significant reduction in cell proliferation (% ratio of BrdU-positive cells to total cell number: vehicle 14±2% vs trapidil 6±1%, *P<0.05). After 3 weeks, there was a dose-dependent reduction of intimal hyperplasia in the trapidil groups compared with vehicle (trapidil 50 mg 1.14±0.04; trapidil 100 mg 0.91±0.09*; trapidil 200 mg 0.77±0.09* vs vehicle 1.67±0.23, *P<0.05). Thus, the local administration of trapidil to the rabbit femoral artery reduces the neointima formation, which occurs 2 or 3 weeks after balloon angioplasty via a mechanism, which is dependent on inhibition of cell proliferation. British Journal of Pharmacology (2000) 129, 566,572; doi:10.1038/sj.bjp.0703098 [source] |