BrdU

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of BrdU

  • incorporated brdu

  • Terms modified by BrdU

  • brdu incorporation
  • brdu injection
  • brdu labeling
  • brdu uptake

  • Selected Abstracts


    Inhibition of Canonical Wnt Signaling Increases Microvascular Hemorrhaging and Venular Remodeling in Adult Rats

    MICROCIRCULATION, Issue 5 2010
    JASON T. GLAW
    Microcirculation (2010) 17, 348,357. doi: 10.1111/j.1549-8719.2010.00036.x Abstract Objective:, The canonical Wnt signaling pathway, heavily studied in development and cancer, has recently been implicated in microvascular growth with the use of developmental and in vitro models. To date, however, no study exists showing the effects of perturbing the canonical Wnt pathway in a complete microvascular network undergoing physiological remodeling in vivo. Our objective was to investigate the effects of canonical Wnt inhibition on the microvascular remodeling of adult rats. Methods:, Canonical Wnt inhibitor DKK-1, Wnt inhibitor sFRP-1, BSA or saline was superfused onto the exteriorized mesenteric windows of 300 g adult female Sprague-Dawley rats for 20 minutes. Three days following surgery, mesenteric windows were imaged intravitally and harvested for immunofluorescence staining with smooth muscle alpha-actin and BRDU. Results:, We observed prominent differences in the response of the mesenteric microvasculature amongst the various treatment groups. Significant increases in hemorrhage area, vascular density, and draining vessel diameter were observed in windows treated with Wnt inhibitors as compared to control-treated windows. Additionally, confocal imaging analysis showed significant increases in proliferating cells as well as evidence of proliferating smooth muscle cells along venules. Conclusions:, Together, our results suggest that canonical Wnt inhibition plays an important role in microvascular remodeling, specifically venular remodeling. [source]


    Functional dentate gyrus neurogenesis in a rapid kindling seizure model

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
    Paul D. Smith
    Abstract Neurogenesis in the adult mammalian hippocampus resulting in long-term persistence of new neurons with features of capacity for functional activation is recognized. Many stimuli are capable of increasing the rate of neurogenesis, including seizure activity. Whether these insults result in an increased number of new functionally active neurons over and above the baseline rate of neurogenesis is not known. The rapid electrical amygdala kindling (REAK) model of seizures isolates the effects of seizures alone in the absence of neuronal death and the resulting seizures induce expression of c-Fos in the vast majority of dentate gyrus (DG) granule cells. C57BL/6 mice were exposed to REAK then injected with bromodeoxyuridine (BrDU) to label dividing cells, then re-exposed to REAK after a delay period to allow detection of functional activation in new neurons by measurement c-Fos expression in response to seizures. Adult subgranular zone cells migrated into the DG granule cell layer (GCL), assumed a neuronal phenotype and demonstrated seizure-dependent responsiveness. Larger absolute numbers of new neurons demonstrating seizure-dependent activation were found in the GCL of previously kindled mice. Seizures are capable of increasing the number of new neurons with the capacity for functional activation laid down in the postseizure period and incorporated into seizure-activated circuitry. [source]


    Disruption of brain development in male rats exposed prenatally to 5-bromo-2,-deoxyuridine

    CONGENITAL ANOMALIES, Issue 4 2001
    Makiko Kuwagata
    ABSTRACT, Sprague-Dawley rats were treated intraperitoneally with 5-bromo-2,-deoxyuridine (BrdU) at 0,12.5 or 50 mg/kg/day on days 9 through 15 of gestation to evaluate the effects on development of the brain of offspring. Prenatal exposure to BrdU induced abnormal development of the brain; dilatation of the lateral ventricles in male offspring in the postnatal period. The ratio of the length of the longitudinal fissure to that of the cerebral cortex decreased in a dose-dependent manner in the embryonic period and thereafter. In 14-week-old male offspring exposed prenatally to BrdU at 50 mg/kg, the cortex layer of the cerebrum was thinner than that of the controls. Masculine sexual behavior was markedly impaired and the volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) was decreased in the 50 mg/kg group as compared with the controls. These results demonstrate that prenatal exposure to BrdU affected the development of the brain hi the prenatal and postnatal stages and reduced the volume of SDN-POA after puberty, resulting in a disruption of reproductive ability in male rats. [source]


    Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression

    CYTOSKELETON, Issue 1 2007
    Richard S. Cameron
    Abstract Rat Myo16a and Myo16b comprise the founding members of class XVI myosin and are characterized by an N-terminal ankyrin repeat domain thought to mediate an association with protein phosphatase 1 catalytic subunits 1, and 1,. Myo16b is the principal isoform and reveals predominant expression in developing neural tissue. Here, we use COS-7 cells as a model system to develop an understanding of Myo16b function. We find that Myo16b displays predominant localization in the nucleus of cells transitioning through interphase, but is not associated with processes of mitosis. Using a panel of EGFP-Myo16b-expression plasmids in transient transfection studies, we identified the COOH-terminal residues 1616,1912 as necessary and solely sufficient to target Myo16b to the nucleus. We show that the Myo16b-tail region directs localization to a nuclear compartment containing profilin and polymerized actin, which appears to form a three-dimensional meshwork through the depth of the nucleus. Further, we demonstrate that this compartment localizes within euchromatic regions of the genome and contains proliferating cell nuclear antigen (PCNA) and cyclin A, both markers of S-phase of the cell cycle. Cells transiently expressing Myo16b or Myo16b-tail region show limited incorporation of BrdU, delayed progression through S-phase of the cell cycle, and curtailed cellular proliferation. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


    Retinoic acid increases the length and volume density of ducts in the rat embryonic pancreas

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2003
    Carene Erasmus
    In this study, the role of all -trans retinoic acid (RA) on the proliferation of rat embryonic pancreas ducts and on the proportion of insulin cells was investigated. All- trans RA (10,6 m) was added to Ham's F12. ITS serum-free medium in which 12.5 day rat dorsal pancreatic buds were cultured on Matrigel. Control explants were cultured on Matrigel in Ham's F12. ITS alone or in Ham's F12. ITS containing ethanol (the diluent for RA). After a 7 day culture period, explants were incubated with bromodeoxyuridine (BrdU) for assessment of cell proliferation. Explants were processed for both morphometry and immunocytochemistry. The length density and volume density of the pancreatic ducts were assessed using an image analysis system. Cells positive for insulin, BrdU and glucagon were localized on adjacent serial sections. RA treatment caused a statistically significant increase in the volume density (P < 0.007) and length density (P < 0.008) of the ducts, as well as a 1.2-fold increase (P < 0.0001) in the proportion of insulin to glucagon cells, compared to both control groups. Few insulin cells were BrdU positive, indicating that cells had a low proliferation rate. The increased proportion of insulin cells may relate to the increased volume density and length density of the ducts in RA-treated explants. It is suggested that RA stimulated the production of additional progenitor cells and not proliferation of existing insulin cells. [source]


    TGF-,3,dependent SMAD2 phosphorylation and inhibition of MEE proliferation during palatal fusion

    DEVELOPMENTAL DYNAMICS, Issue 3 2003
    Xiao-Mei Cui
    Abstract Transforming growth factor (TGF) -,3 is known to selectively regulate the disappearance of murine medial edge epithelium (MEE) during palatal fusion. Previous studies suggested that the selective function of TGF-,3 in MEE was conducted by TGF-, receptors. Further studies were needed to demonstrate that the TGF-, signaling mediators were indeed expressed and phosphorylated in the MEE cells. SMAD2 and SMAD3 were both present in the MEE, whereas SMAD2 was the only one phosphorylated during palatal fusion. SMAD2 phosphorylation was temporospatially restricted to the MEE and correlated with the disappearance of the MEE. No phosphorylated SMAD2 was found in MEE in TGF-,3,/, mice, although nonphosphorylated SMAD2 was present. The results suggest that TGF-,3 is required for initiating and maintaining SMAD2 phosphorylation in MEE. Phospho-SMAD3 was not detectable in palate during normal palatal fusion. Previous results suggested TGF-,,induced cessation of DNA synthesis in MEE cells during palatal fusion in vitro. The present results provide evidence that inhibition of MEE proliferation in vivo was controlled by endogenous TGF-,3. The number of 5-bromo-2,-deoxyuridine (BrdU) -labeled MEE cells was significantly reduced in TGF-,3+/+ compared with TGF-,3,/, mice when the MEE seam formed (t -test, P < 0.05). This finding suggests that TGF-,3 is required for inhibiting MEE proliferation during palatal fusion. The inhibition of MEE proliferation may be mediated by TGF-,3,dependent phosphorylation of SMAD2. Developmental Dynamics 227:387,394, 2003. © 2003 Wiley-Liss, Inc. [source]


    An SNF2 factor involved in mammalian development and cellular proliferation

    DEVELOPMENTAL DYNAMICS, Issue 1 2001
    Eric H. Raabe
    Abstract Members of the SNF2 (Sucrose Non-Fermenter) family of chromatin-remodeling proteins function in processes ranging from DNA repair to transcription to methylation. Using differential display, we recently identified a novel member of the SNF2 family that is highly expressed at the mRNA level in proliferating cells and is down-regulated during apoptosis. We have named this gene PASG (Proliferation-Associated SNF2-like Gene). Northern blot analysis of adult mouse tissues shows PASG to be highly expressed in proliferating organs such as thymus, bone marrow, and testis and absent from nonproliferative tissues such as brain and heart. In situ hybridization analysis of mouse embryos shows that PASG is differentially expressed during development, with highest expression in developing face, limbs, skeletal muscle, heart, and tail. In vitro, PASG expression correlates with a shift from a quiescent to a proliferative state. Mice null for PASG (also known as LSH or Hells) are reported to die perinatally, although the mechanism for lethality is unclear (Geiman and Muegge, 2000). To test the hypothesis that PASG functions in cell proliferation, we compared 5-bromodeoxyuridine (BrdU) incorporation in C33A cells transiently transfected with PASG versus empty vector and found that PASG transfected cells showed a significant decrease in the amount of BrdU incorporation. These findings suggest that PASG plays a role in cell proliferation and may function in the development of multiple cell lineages during murine embryogenesis. © 2001 Wiley-Liss, Inc. [source]


    Species-specific injury-induced cell proliferation in the hippocampus and subventricular zone of food-storing and nonstoring wild birds

    DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2010
    L.M. Law
    Abstract Cells are continuously born and incorporated into the adult hippocampus (HP). Adult neurogenesis might act to increase the total number of cells or replace dead cells. Thus, neurogenesis might be a primary factor in augmenting, maintaining, or even recovering functions. In zebra finches, HP injury increases cell proliferation in the HP and stem cell rich subventricular zone (SVZ). It is unknown what effect injury has on a species dependent upon the HP for survival in the wild. In food-storing birds, recovery of caches is seasonal, necessary for survival, dependent upon the HP and is concomitant with a peak in HP neurogenesis. During the fall, food-storing black-capped chickadees (BCCs) and nonstoring dark-eyed juncos (DEJs) were captured and given a unilateral penetrating lesion to the HP one day later. On day 3, birds were injected with the mitotic marker 5-bromo-2,-deoxyuridine (BrdU) and perfused on day 10. If unlesioned, more BrdU-labeled cells were observed in the HP and SVZ of BCCs compared to DEJs, indicating higher innate cell proliferation or incorporation in BCCs. If lesioned, BrdU-labeled cells increased in the injured HP of both species; however, lesions caused larger increases in DEJs. DEJs also showed increases in BrdU-labeled cells in the SVZ and contralateral HP. BCCs showed no such increases on day 10. Thus, during the fall food-storing season, storers showed suppressed injury-induced cell proliferation and/or reduced survival rates of these new cells compared to nonstorers. These species differences may provide a useful model for isolating factors involved in cellular responses following injury. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010 [source]


    Aromatase expression and cell proliferation following injury of the adult zebra finch hippocampus

    DEVELOPMENTAL NEUROBIOLOGY, Issue 14 2007
    R. Scott Peterson
    Abstract Estrogens can be neuroprotective following traumatic brain injury. Immediately after trauma to the zebra finch hippocampus, the estrogen-synthetic enzyme aromatase is rapidly upregulated in astrocytes and radial glia around the lesion site. Brain injury also induces high levels of cell proliferation. Estrogens promote neuronal differentiation, migration, and survival naturally in the avian brain. We suspect that glia are a source of estrogens promoting cell proliferation after neural injury. To explore this hypothesis, we examined the spatial and temporal relationship between glial aromatase expression and cell proliferation after neural injury in adult female zebra finches. Birds were ovariectomized and given a blank implant or one filled with estradiol; some birds were also administered an aromatase inhibitor or vehicle. All birds received penetrating injuries to the right hippocampus. Twenty-four hours after lesioning, birds were injected once with BrdU to label mitotically active cells and euthanized 2 h, 24 h, or 7 days later. The brains were processed for double-label BrdU and aromatase immunocytochemistry. Injury-induced glial aromatase expression was unaffected by survival time and aromatase inhibition. BrdU labeling was significantly reduced at 24 h by ovariectomy and by aromatase inhibition; effects were partially reversed by E2 replacement. Irrespective of ovariectomy, the densities of aromatase immunoreactive astrocytes and BrdU-labeled cells at known distances from the lesion site were highly correlated. These data suggest that injury-induced glial aromatization may influence the reorganization of injured tissue by providing a rich estrogenic environment available to influence cellular incorporation. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats

    DEVELOPMENTAL NEUROBIOLOGY, Issue 10 2007
    Mark D. Spritzer
    Abstract Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2,deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    Greater hippocampal neuronal recruitment in food-storing than in non-food-storing birds

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2007
    Jennifer S. Hoshooley
    Abstract Previous research has shown heightened recruitment of new neurons to the chickadee hippocampus in the fall. The present study was conducted to determine whether heightened fall recruitment is associated with the seasonal onset of food-storing by comparing neurogenesis in chickadees and a non-food-storing species, the house sparrow. Chickadees and house sparrows were captured in the wild in fall and spring and received multiple injections of the cell birth marker bromodeoxyuridine (BrdU). Birds were held in captivity and the level of hippocampal neuron recruitment was assessed after 6 weeks. Chickadees showed significantly more hippocampal neuronal recruitment than house sparrows. We found no seasonal differences in hippocampal neuronal recruitment in either species. In chickadees and in house sparrows, one-third of new cells labeled for BrdU also expressed the mature neuronal protein, NeuN. In a region adjacent to the hippocampus, the hyperpallium apicale, we observed no significant differences in neuronal recruitment between species or between seasons. Hippocampal volume and total neuron number both were greater in spring than in fall in chickadees, but no seasonal differences were observed in house sparrows. Enhanced neuronal recruitment in the hippocampus of food-storing chickadees suggests a degree of neurogenic specialization that may be associated with the spatial memory requirements of food-storing behavior. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    Developmental changes in cell proliferation in the auditory midbrain of the bullfrog, Rana catesbeiana

    DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2006
    Andrea Megela Simmons
    Abstract We examined patterns of cell proliferation in the auditory midbrain (torus semicircularis) of the bullfrog, Rana catesbeiana, over larval and early postmetamorphic development, by visualizing incorporation of 5-bromo-2,-deoxyuridine (BrdU) in cycling cells. At all developmental stages, BrdU-labeled cells were concentrated around the optic ventricle. BrdU-labeled cells also appeared within the torus semicircularis itself, in a stage-specific manner. The mitotic index, quantified as the percent of BrdU-positive cells outside the ventricular zone per total cells available for label, varied over larval development. Mitotic index was low in hatchling, early larval, and late larval stages, and increased significantly in deaf period, metamorphic climax, and froglet stages. Cell proliferation was higher in metamorphic climax than at other stages, suggesting increased cell proliferation in preparation for the transition from an aquatic to an amphibious existence. The change in mitotic index over development did not parallel the change in the total numbers of cells available for label. BrdU incorporation was additionally quantified by dot-blot assay, showing that BrdU is available for label up to 72 h postinjection. The pattern of change in cell proliferation in the torus semicircularis differs from that in the auditory medulla (dorsal medullary nucleus and superior olivary nucleus), suggesting that cell proliferation in these distinct auditory nuclei is mediated by different underlying mechanisms. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 1212,1224, 2006 [source]


    GDNF and insulin cooperate to enhance the proliferation and differentiation of enteric crest-derived cells

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003
    Paul J. Focke
    Abstract Previously we have shown that glial derived neurotrophic factor (GDNF) stimulates modest increases in the proliferation of avian enteric crest-derived cells and similar increases in the phosphorylation of the phosphoinositide 3,kinase (PI3K) downstream substrate Akt (Akt-P). In the present study we tested whether GDNF-independent increases in PI3K activation would be sufficient to support proliferation. We found that insulin induces a large increase in the phosphorylation of Akt and can initiate DNA synthesis in avian enteric crest-derived cells, but is unable to maintain proliferation over time in culture, measured by BrdU incorporation. GDNF can also initiate DNA synthesis, but it too is unable to maintain BrdU incorporation in cultured enteric crest-derived cells. Sustained incorporation of BrdU after 16,48 h in culture is shown to be dependent on a combination of GDNF and insulin. Using a phospho-specific antibody, we found Akt-P levels to be similar in the proliferating (BrdU incorporation maintained from 16,48 h in culture) and nonproliferating populations, suggesting that Akt-P levels were not solely controlling the extent of BrdU incorporation. A minimum level of PI3K activation, however, is required, as shown by the dose-dependent reduction in proliferation with the PI3K inhibitor LY-294002. We conclude that the integrity of the PI3K pathway is essential for enteric crest-derived cell proliferation, but that the absolute levels of Akt-P do not determine the extent of proliferation. The enhanced proliferation in cultures containing both GDNF and insulin suggests that other pathways are involved, including the possibility that PI3K downstream effectors other than Akt are important in the regulation of avian enteric crest-derived cell proliferation. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 151,164, 2003 [source]


    The effects of social environment on adult neurogenesis in the female prairie vole

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002
    Christie D. Fowler
    Abstract In the mammalian brain, adult neurogenesis has been found to occur primarily in the subventricular zone (SVZ) and dentate gyrus of the hippocampus (DG) and to be influenced by both exogenous and endogenous factors. In the present study, we examined the effects of male exposure or social isolation on neurogenesis in adult female prairie voles (Microtus ochrogaster). Newly proliferated cells labeled by a cell proliferation marker, 5-bromo-2,-deoxyuridine (BrdU), were found in the SVZ and DG, as well as in other brain areas, such as the amygdala, hypothalamus, neocortex, and caudate/putamen. Two days of male exposure significantly increased the number of BrdU-labeled cells in the amygdala and hypothalamus in comparison to social isolation. Three weeks later, group differences in BrdU labeling generally persisted in the amygdala, whereas in the hypothalamus, the male-exposed animals had more BrdU-labeled cells than did the female-exposed animals. In the SVZ, 2 days of social isolation increased the number of BrdU-labeled cells compared to female exposure, but this difference was no longer present 3 weeks later. We have also found that the vast majority of the BrdU-labeled cells contained a neuronal marker, indicating neuronal phenotypes. Finally, group differences in the number of cells undergoing apoptosis were subtle and did not seem to account for the observed differences in BrdU labeling. Together, our data indicate that social environment affects neuron proliferation in a stimulus- and site-specific manner in adult female prairie voles. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 115,128, 2002 [source]


    Neuronal differentiation and long-term survival of newly generated cells in the olfactory midbrain of the adult spiny lobster, Panulirus argus

    DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2001
    Manfred Schmidt
    Abstract The fate of continuously generated cells in the soma clusters of the olfactory midbrain of adult spiny lobsters, Panulirus argus, was investigated by in vivo pulse-chase experiments with the proliferation marker 5-bromo-2,-deoxyuridine (BrdU) combined with immunostainings for neuropeptides of mature neurons. A BrdU injection after a survival time (ST) of 14 h labeled about 100 nuclei in the lateral soma clusters (LC), comprised of projection neurons, and about 30 nuclei in the medial soma clusters (MC), comprised of local interneurons. The BrdU-positive nuclei were confined to small regions at the inside of these clusters, which also contain nuclei in different phases of mitosis and thus represent proliferative zones. After STs of 2 weeks or 3 months, the number of BrdU-positive nuclei was doubled, indicating a mitosis of all originally labeled cells. Dependent on ST, the BrdU-positive nuclei were translocated from the proliferative zones towards the outside of the clusters, where somata of mature neurons reside. Immunostainings with antibodies to the neuropeptides FMRFamide and substance P, both of which label a large portion of somata in the MC and a pair of giant neurons projecting into the LC, revealed that in both clusters the proliferative zones are surrounded by, but are themselves devoid of, labeling. In the MC, some BrdU-positive somata were double-labeled by the FMRFamide antibody after an ST of 3 months, and by the substance P antibody after STs of 6 and 11/14 months, but not after 3 months. In the LC, BrdU-positive somata after an ST of 3 months partially and after 6 and 11/14 months widely overlapped with the arborizations of the giant neurons, indicating the establishment of synaptic input. The experiments show that cells generated in proliferative zones in the LC and MC of adult spiny lobsters after a final mitosis differentiate into neurons within months, survive for at least 1 year, and are integrated into the circuitry of the olfactory midbrain. A new hypothesis about the mechanism of adult neurogenesis in the central olfactory pathway of decapod crustaceans is developed, linking it to neurogenesis during embryonic and larval development. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 181,203, 2001 [source]


    Micronuclei and chromatid buds are the result of related genotoxic events

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2001
    Luis Serrano-García
    Abstract Chromatin buds (CHB), broken eggs, or budding cell nuclei are structures similar to micronuclei (MN) in shape, structure, and size, which are linked to the main nuclei of cells by a thread or stalks of chromatin. They have been observed in numerous cell types and there are reports of their existence relating them with MN or with genotoxic events. However, there is no systematic study reporting their frequency and no experiment has been done to ascertain whether they are really induced by genotoxins. Furthermore, they have been discarded as genotoxic events with the argument that they are not formed in dividing cells. Studies are presented here that indicate that CHB can be considered as genotoxic events and that their origin is comparable to that of MN. Bromodeoxyuridine (BrdU) was used to label proliferating lymphocytes, which were later identified by means of an immunohistochemical method, using the H2O2,DAB stain. The results show that CHB are consistently formed where MN are seen. CHB were induced by the clastogen mitomycin C (MMC) as well as by the aneuploidogen colcemid, with frequencies similar to MN in both cases, and to multinucleated cells in the case of colcemid. CHB occur in lymphocytes of smokers with frequencies similar to those of MN, and we found that the infection with Taenia solium metacestodes induced a comparable increase of both MN and CHB frequency in lymphocytes from pigs. Environ. Mol. Mutagen. 38:38,45, 2001 © 2001 Wiley-Liss, Inc. [source]


    Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2008
    Anna Edlund
    Summary Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179, ,64 and ,337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labelled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labelled DNA and DNA from reverse transcription polymerase chain reaction showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences, indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths. [source]


    Bacterioplankton assemblages transforming dissolved organic compounds in coastal seawater

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2007
    Xiaozhen Mou
    Summary To characterize bacterioplankton functional assemblages that transform specific components of the coastal seawater dissolved organic carbon (DOC) pool, bromodeoxyuridine (BrdU) was used to label the bacterioplankton cells that were active following addition of single-DOC model compounds: two organic osmolytes [dimethylsulfoniopropionate (DMSP) and glycine betaine (GlyB)] and two aromatic monomers [para -hydroxybenzoic acid (pHBA) and vanillic acid (VanA)]. Bacterial populations were analysed based on in situ fluorescent immunodetection of BrdU incorporation followed by fluorescence-activated cell sorting (FACS). Sorted cells were then characterized by 16S rDNA-based analysis. Populations with high BrdU incorporation level (HI) developed within 8 h of introduction of 100 nM model compound. Terminal restriction fragment length polymorphisms (T-RFLP) analysis indicated that the HI populations in all four amendments were composed of bacteria from the same major taxa (phylum and subphylum levels), but the relative abundance of each differed. High-resolution clone libraries (each containing ,200 clones) showed that the HI populations in the GlyB and VanA amendments consisted of both metabolic generalists and specialists within the , -Proteobacteria (mainly members of the Roseobacter clade), , -Proteobacteria and , -Proteobacteria (mainly members of Altermonadaceae, Chromatiaceae, Oceanospirillaceae and Pseudomonadaceae). The presence of members of OM60/241, OM185, SAR11, SAR86 and SAR116 in the HI populations indicated that members of these groups can assimilate the model DOC compounds, providing some of the first glimpses into heterotrophy by members of these poorly understood environmental clusters. [source]


    Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species

    ENVIRONMENTAL MICROBIOLOGY, Issue 12 2005
    Veronica Artursson
    Summary High numbers of bacteria are associated with arbuscular mycorrhizal (AM) fungi, but their functions and in situ activities are largely unknown and most have never been characterized. The aim of the present study was to study the impact of Glomus mosseae inoculation and plant type on the active bacterial communities in soil by using a molecular approach, bromodeoxyuridine (BrdU) immunocapture in combination with terminal-restriction fragment length polymorphism (T-RFLP). This approach combined with sequence information from clone libraries, enabled the identification of actively growing populations, within the total bacterial community. Distinct differences in active bacterial community compositions were found according to G. mosseae inoculation, treatment with an antifungal compound (Benomyl) and plant type. The putative identities of the dominant bacterial species that were activated as a result of G. mosseae inoculation were found to be mostly uncultured bacteria and Paenibacillus species. These populations may represent novel bacterial groups that are able to influence the AM relationship and its subsequent effect on plant growth. [source]


    The importance of cerebrospinal fluid on neural cell proliferation in developing chick cerebral cortex

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 3 2006
    F. Mashayekhi
    Cerebrospinal fluid (CSF) is mainly produced by the choroid plexuses within the ventricles of the brain. The CSF circulates in a regular manner after the ventricular system and the choroids plexuses have developed, and the foramina in the fourth ventricle have opened to enable it to carry chemical information. CSF flows through the ventricular system passing over all regions of germinal activity. In this study, chick embryos were used to show the importance of CSF on neural cell proliferation in the developing cerebral cortex. The chick embryos were cannulated in situ with a fine capillary tube to drain CSF out of the ventricular system. At the same time, BrdU was administered to the embryos. After surgery the embryos were incubated for another 3 days. Quantitative measurements showed that the thicknesses of the germinal epithelium and cerebral cortex in CSF-drained embryos were less than those in the control group at the same age. The number of cells produced in the germinal epithelium of CSF-drained embryos was decreased when compared with the normal group. This study provides confirmatory evidence that CSF is important for neural cell proliferation and therefore normal development of the cerebral cortex. It is proposed that CSF is vital in controlling development of the cerebral cortex. [source]


    Neurosphere generation from dental pulp of adult rat incisor

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008
    Ryo Sasaki
    Abstract Dental pulp is a potential source of cells that can be used in cell replacement therapy for various nervous system disorders. Here we report that adult rat dental pulp cells have the ability to form neurospheres when cultured in serum-free culture medium on super-hydrophilic plates. The cells within small spheres continued to grow, and the dental pulp-derived cells generated large spheres. Sphere formation was dependent on exogenously supplied basic-fibroblast growth factor, but not on epidermal growth factor, and the formation and growth of dental pulp-derived spheres were negatively regulated by transforming growth factor-,. Plating cells that were dissociated from spheres on an adhesive substrate resulted in differentiation into Tuj1- and MAP2-positive neuronal cells. Analysis of the three-dimensional structure of dental pulp-derived spheres shows that they contained nestin-positive progenitors, Tuj1-positive neuronal cells and S100-positive glial cells. We found that spheres contained CD81 (TAPA1) and nestin double-positive cells, and identified a small population of CD81 and nestin double-positive cells in the odontoblast layer of the dental pulp. Flow cytometric analysis showed that CD81-positive cells were enriched in the spheres compared with the dental pulp tissue. Bromodeoxyuridine (BrdU) staining showed that nestin- and BrdU-positive cells were located only in the apical portion of the dental pulp, and the apical portion produced a large number of large-sized spheres. These data suggest that the CD81 and nestin double-positive cells localized in the odontoblast layer of the apical portion of the dental pulp may have the ability to grow and form neurospheres. [source]


    Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
    Haydn M. Prosser
    Abstract New neurons are added on a daily basis to the olfactory bulb (OB) of a mammal, and this phenomenon exists throughout its lifetime. These new cells are born in the subventricular zone and migrate to the OB via the rostral migratory stream (RMS). To examine the role of the prokineticin receptor 2 (Prokr2) in neurogenesis, we created a Prokr2 null mouse, and report a decrease in the volume of its OB and also a decrease in the number of bromodeoxyuridine (BrdU)-positive cells. There is disrupted architecture of the OB, with the glomerular layer containing terminal dUTP nick-end labeling (TUNEL) -positive nuclei and also a decrease in tyrosine hydroxylase-positive neurons in this layer. In addition, there are increased numbers of doublecortin-positive neuroblasts in the RMS and increased PSA-NCAM (polysialylated form of the neural cell adhesion molecule) -positive neuronal progenitors around the olfactory ventricle, indicating their detachment from homotypic chains is compromised. Finally, in support of this, Prokr2-deficient cells expanded in vitro as neurospheres are incapable of migrating towards a source of recombinant human prokineticin 2 (PROK2). Together, these findings suggest an important role for Prokr2 in OB neurogenesis. [source]


    Blockade of caspase-1 increases neurogenesis in the aged hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
    Carmelina Gemma
    Abstract Adult hippocampal neurogenesis dramatically decreases with increasing age, and it has been proposed that this decline contributes to age-related memory deficits. Central inflammation contributes significantly to the decrease in neurogenesis associated with ageing. Interleukin-1, is a proinflammatory cytokine initially synthesized as an inactive precursor that is cleaved by caspase-1 to generate the biologically active mature form. Whether IL-1, affects neurogenesis in the aged hippocampus is unknown. Here we analysed cells positive for 5-bromo-2-deoxyuridine (BrdU; 50 mg/kg) in animals in which cleavage of IL-1, was inhibited by the caspase-1 inhibitor Ac-YVAD-CMK (10 pmol). Aged (22 months) and young (4 months) rats received Ac-YVAD-CMK for 28 days intracerebroventricularly through a brain infusion cannula connected to an osmotic minipump. Starting on day 14, animals received a daily injection of BrdU for five consecutive days. Unbiased stereology analyses performed 10 days after the last injection of BrdU revealed that the total number of newborn cells generated over a 5-day period was higher in young rats than in aged rats. In addition, there was a 53% increase in the number of BrdU-labelled cells of the aged Ac-YVAD-CMK-treated rats compared to aged controls. Immunofluorescence studies were performed to identify the cellular phenotype of BrdU-labelled cells. The increase in BrdU-positive cells was not due to a change in the proportion of cells expressing neuronal or glial phenotypes in the subgranular zone. These findings demonstrate that the intracerebroventricular administration of Ac-YVAD-CMK reversed the decrease in hippocampal neurogenesis associated with ageing. [source]


    Estrogen modulates neuronal movements within the developing preoptic area,anterior hypothalamus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
    John Gabriel Knoll
    Abstract The preoptic area,anterior hypothalamus (POA-AH) is characterized by sexually dimorphic features in a number of vertebrates and is a key region of the forebrain for regulating physiological responses and sexual behaviours. Using live-cell fluorescence video microscopy with organotypic brain slices, the current study examined sex differences in the movement characteristics of neurons expressing yellow fluorescent protein (YFP) driven by the Thy-1 promoter. Cells in slices from embryonic day 14 (E14), but not E13, mice displayed significant sex differences in their basal neuronal movement characteristics. Exposure to 10 nm estradiol-17, (E2), but not 100 nm dihydrotestosterone, significantly altered cell movement characteristics within minutes of exposure, in a location-specific manner. E2 treatment decreased the rate of motion of cells located in the dorsal POA-AH but increased the frequency of movement in cells located more ventrally. These effects were consistent across age and sex. To further determine whether early-developing sex differences in the POA-AH depend upon gonadal steroids, we examined cell positions in mice with a disruption of the steroidogenic factor-1 gene, in which gonads do not form. An early-born cohort of cells were labelled with the mitotic indicator bromodeoxyuridine (BrdU) on E11. More cells were found in the POA-AH of females than males on the day of birth (P0) regardless of gonadal status. These results support the hypothesis that estrogen partially contributes to brain sexual dimorphism through its influence on cell movements during development. Estrogen's influence may be superimposed upon a pre-existing genetic bias. [source]


    Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
    Rende Gu
    Abstract Millions of lives are affected by hearing and balance deficits that arise as a consequence of sensory hair cell loss. Those deficits affect mammals permanently, but hearing and balance recover in nonmammals after epithelial supporting cells divide and produce replacement hair cells. Hair cells are not effectively replaced in mammals, but balance epithelia cultured from the ears of rodents and adult humans can respond to hair cell loss with low levels of supporting cell proliferation. We have sought to stimulate vestibular proliferation; and we report here that treatment with glial growth factor 2 (rhGGF2) yields a 20-fold increase in cell proliferation within sheets of pure utricular hair cell epithelium explanted from adult rats into long-term culture. In epithelia from neonates, substantially greater proliferation responses are evoked by rhGGF2 alone, insulin alone and to a lesser degree by serum even during short-term cultures, but all these responses progressively decline during the first 2 weeks of postnatal maturation. Thus, sheets of utricular epithelium from newborn rats average >,40% labelling when cultured for 72 h with bromo-deoxyuridine (BrdU) and either rhGGF2 or insulin. Those from 5- and 6-day-olds average 8,15%, 12-day-olds average <,1% and after 72 h there is little or no labelling in epithelia from 27- and 35-day-olds. These cells are the mammalian counterparts of the progenitors that produce replacement hair cells in nonmammals, so the postnatal quiescence described here is likely to be responsible for at least part of the mammalian ear's unique vulnerability to permanent sensory deficits. [source]


    Low doses of bromo- and iododeoxyuridine produce near-saturation labeling of adult proliferative populations in the dentate gyrus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005
    Kevin A. Burns
    Abstract Cell proliferation can be detected by the incorporation of tritiated thymidine (3H-dT) or halopyrimidines during DNA synthesis in progenitor cells. Administration of two thymidine analogues at different times can further determine the cell-cycle kinetics of proliferating cells. Traditionally, this was done by combining bromodeoxyuridine (BrdU) immunocytochemistry and 3H-dT autoradiography, or by BrdU and iododeoxyuridine (IdU) double-labeling using two mouse antibodies. However, these methods either require lengthy exposure time or involve complicated histological procedures for differentiating between two antibodies of the same species. Here we report a simple and reliable method of distinguishing BrdU- and IdU-labeled cells by immunofluorescence. This method uses a mouse monoclonal antibody that recognizes both BrdU and IdU and a rat anti-BrdU antibody that has no cross-reactivity with IdU. When combined with species-specific secondary antibodies that are conjugated to different fluorophores, this method identifies BrdU- and IdU-incorporation as doubly and singly labeled cells, respectively. This method has broad applications. First, we demonstrate that this method can distinguish mouse cortical neurons generated on different embryonic days. Second, by administering IdU and BrdU at varying intervals, we used this method to calculate that the length of S-phase of neural progenitor cells in the adult mouse dentate gyrus is approximately 6 h. Finally, we show that a six-fold higher concentration of IdU detects only 10% more cells than the standard dose of BrdU (50 mg/kg) using the double-labeling method. These results suggest that the standard dose of BrdU is sufficient to label the majority of proliferative populations in the S-phase in pulse labeling experiments. [source]


    Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2004
    Maki Kamada
    Abstract Organotypic slice culture preserves the morphological and physiological features of the hippocampus of live animals for a certain time. The hippocampus is one of exceptional regions where neurons are generated intrinsically and spontaneously throughout postnatal life. We investigated the possibility that neurons are generated continuously at the dentate granule cell layer (GCL) in slice culture of the rat hippocampus. Using 5-bromodeoxyuridine (BrdU) labelling and retrovirus vector transduction methods, the phenotypes of the newly generated cells were identified immunohistochemically. At 4 weeks after BrdU exposure, BrdU-labelled cells were found in the GCL and were immunoreactive with a neuronal marker, anti-NeuN. There were fibrils immunoreactive with anti-glial fibrillary acidic protein (GFAP), an astrocyte marker, in the layer covering the GCL and occasionally encapsulated BrdU-labelled nuclei. When the newly divided cells were marked with the enhanced green fluorescent protein (EGFP) using a retrovirus vector, these cells had proliferative abilities throughout the following 4-week cultivation period. Four weeks after the inoculation, the EGFP-expressing cells consisted of various phenotypes of both early and late stages of differentiation; some were NeuN-positive cells with appearances of neurons in the GCL and some were immunoreactive with anti-Tuj1, a marker of immature neurons. Some EGFP-expressing cells were immunoreactive with anti-GFAP or anti-nestin, a marker of neural progenitors. The present study suggests that slice cultures intrinsically retain spontaneous neurogenic abilities for their cultivation period. The combination of slice culture and retrovirus transduction methods enable the newly divided cells to be followed up for a long period. [source]


    Efficacy of doublecortin as a marker to analyse the absolute number anddendritic growth of newly generated neurons in the adult dentate gyrus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004
    Muddanna S. Rao
    Abstract Doublecortin (DCX), a microtubule-associated phosphoprotein, has been recently utilized as a marker of newly born neurons in the adult dentate gyrus (DG). Nonetheless, it is unknown whether DCX exclusively labels newly formed neurons, as certain granule cells with the phenotype of differentiated neurons express DCX. We addressed the authenticity of DCX as a marker of new neurons in the adult DG by quantifying cells that are positive for 5,-bromodeoxyuridine (BrdU), DCX and both BrdU and DCX in hippocampal tissues of adult rats treated with daily injections of BrdU for 12 consecutive days. We provide new evidence that neurons visualized with DCX immunostaining in the adult rat DG are new neurons that are predominantly born during the 12 days before euthanasia. This is confirmed by the robust expression of BrdU in 90% of DCX-positive neurons in the DG of animals injected with BrdU for 12 days. Furthermore, DCX expression is specific to newly generated healthy neurons, as virtually all DCX-positive cells express early neuronal antigens but lack antigens specific to glia, undifferentiated cells or apoptotic cells. As DCX expression is also robust in the dendrites, DCX immunocytochemistry of thicker sections facilitates quantification of the dendritic growth in newly born neurons. Thus, both absolute number and dendritic growth of new neurons that are generated in the adult DG over a 12-day period can be quantified reliably with DCX immunostaining. This could be particularly useful for analysing changes in dentate neurogenesis in human hippocampal tissues as a function of ageing or neurodegenerative diseases. [source]


    Differentiation and migration of astrocytes in the spinal cord following dorsal root injury in the adult rat

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2003
    Elena N. Kozlova
    Abstract Nerve fibre degeneration in the spinal cord is accompanied by astroglial proliferation. It is not known whether these cells proliferate in situ or are recruited from specific regions harbouring astroglial precursors. We found cells expressing nestin, characteristic of astroglial precursors, at the dorsal surface of the spinal cord on the operated side from 30 h after dorsal root injury. Nestin-expressing cells dispersed to deeper areas of the dorsal funiculus and dorsal horn on the operated side during the first few days after injury. Injection of bromodeoxyuridine (BrdU) 2 h before the end of the experiment, at 30 h after injury, revealed numerous BrdU-labelled, nestin-positive cells in the dorsal superficial region. In animals surviving 20 h after BrdU injection at 28 h postlesion, cells double-labelled with BrdU and nestin were also found in deeper areas. Labeling with BrdU 2 h before perfusion showed proliferation of microglia and radial astrocytes in the ventral and lateral funiculi on both sides of the spinal cord 30 h after injury. Nestin-positive cells coexpressed the calcium-binding protein Mts1, a marker for white matter astrocytes, in the dorsal funiculus, and were positive for glial fibrillary acidic protein (GFAP), but negative for Mts1 in the dorsal horn. One week after injury the level of nestin expression decreased and was undetectable after 3 months. Taken together, our data indicate that after dorsal root injury newly formed astrocytes in the degenerating white and grey matter first appear at the dorsal surface of the spinal cord from where some of them subsequently migrate ventrally, and differentiate into white- or grey-matter astrocytes. [source]


    Postnatal innervation of the rat superior colliculus by axons of late-born retinal ganglion cells

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2002
    Elizabeth J. Dallimore
    Abstract Rat retinal ganglion cells (RGCs) are generated between embryonic day (E) 13 and E19. Retinal axons first reach the superior colliculus at E16/16.5 but the time of arrival of axons from late-born RGCs is unknown. This study examined (i) whether there is a correlation between RGC genesis and the timing of retinotectal innervation and (ii) when axons of late-born RGCs reach the superior colliculus. Pregnant Wistar rats were injected intraperitoneally with bromodeoxyuridine (BrdU) on E16, E18 or E19. Pups from these litters received unilateral superior colliculus injections of fluorogold (FG) at ages between postnatal (P) day P0 and P6, and were perfused 1,2 days later. RGCs in 3 rats from each BrdU litter were labelled in adulthood by placing FG onto transected optic nerve. Retinas were cryosectioned and the number of FG, BrdU and double-labelled (FG+/BrdU+) RGCs quantified. In the E16 group, the proportion of FG-labelled RGCs that were BrdU+ did not vary with age, indicating that axons from these cells had reached the superior colliculus by P0/P1. In contrast, for the smaller cohorts of RGCs born on E18 or E19, the proportion of BrdU+ cells that were FG+ increased significantly after birth; axons from most RGCs born on E19 were not retrogradely FG-labelled until P4/P5. Thus there is a correlation between birthdate and innervation in rat retinotectal pathways. Furthermore, compared to the earliest born RGCs, axons from late-born RGCs take about three times longer to reach the superior colliculus. Later-arriving axons presumably encounter comparatively different growth terrains en route and eventually innervate more differentiated target structures. [source]