Bottom Water (bottom + water)

Distribution by Scientific Domains

Selected Abstracts

Holocene bipolar climate seesaw: possible subtle evidence from the deep North East Atlantic Ocean?,

Mark A. Maslin
Abstract The occurrence of a millennial-scale bipolar climate seesaw has been documented in detail for the last glacial period and Termination. There is, however, debate whether it occurs during interglacials and if it does what influence it could have on future climate. We present here new evidence from a North East Atlantic Ocean deep-sea core which supports the hypothesis for a Holocene bipolar climate seesaw. BENGAL Site 13078#16, from the Porcupine Abyssal Plain, is 4844,m deep and situated at the North Atlantic Deep Water and Antarctic Bottom Water (AABW) interface. Planktic foraminiferal fragment accumulation rate data at this site is an indicator of coarse carbonate dissolution, which is highly sensitive to the incursion of under-saturated AABW. Five dissolution peaks have been identified, which seem to occur approximately 500 a after each of the North Atlantic 'Bond' ice rafting pulses, suggesting a subsequent subtle shallowing of AABW. This indicates a possible lagged climatic link between North East Atlantic surface water conditions and AABW production in the Southern Ocean during the Holocene. This provides the first tentative evidence that there was a Holocene bipolar climate seesaw and that the deep ocean was involved. This study also suggests that extremely sensitive locations need to be sought as the Holocene bipolar climate seesaw seems to be very subtle compared with its glacial counterparts. Copyright 2009 John Wiley & Sons, Ltd. [source]

Length and sex-specific associations between spiny dogfish (Squalus acanthias) and hydrographic variables in the Bay of Fundy and Scotian Shelf

Travis Shepherd
The associations between spiny dogfish (Squalus acanthias) and hydrographic variables (temperature, salinity and depth) were examined in the Bay of Fundy and Scotian Shelf from 1970 to 1998. Data were obtained from standard groundfish bottom trawl surveys. Dogfish sex affected habitat associations. Males were found to occupy bottom water of significantly higher salinities and depths than that occupied by females. Length also significantly affected habitat associations. Smaller dogfish occupied relatively deep, high salinity bottom water compared with larger dogfish. Overall, the occupied temperatures, salinities and depths were significantly different from those which were available. Dogfish occupied warmer temperatures along a narrow range (6.62,9.19C) compared with those which were available (1.57,9.35C). Occupied salinity (32.70,34.43 ppt) and occupied depth (88.62,184.66 m) were also distributed along a narrower range than available salinity (32.16,34.79 ppt) and available depth (55.00,218.10 m). Sex-specific, length-specific and overall environmental preference by dogfish may bias traditional `offshore' groundfish surveys while large scale changes in hydrographic parameters may alter dogfish distribution and their interactions with other marine fauna. [source]

Oxygen and salinity characteristics of predator,prey distributional overlaps shown by predatory Baltic cod during spawning

S. Neuenfeldt
In the distributional overlap volume of Baltic cod Gadus morhua and its prey, studied in the Bornholm Basin in the southern Baltic Sea, only a fraction of the sprat Sprattus sprattus population vertically overlapped with the Baltic cod population. Sprat occurred in the intermediate water, in the halocline and in the bottom water, while herring Clupea harengus and Baltic cod occurred exclusively in the halocline and in the bottom water. Only parts of the sprat population were hence accessible for Baltic cod, and only a fraction of the sprat had access to the Baltic cod eggs below the halocline. Baltic cod,clupeid overlap volumes appeared to be determined by salinity stratification and oxygenation of the bottom water. Hydrography time series were used to estimate average habitat volumes and overlap from July to September in 1958,1999. In the 1999 survey spawning Baltic cod had greater ratios of empty stomachs and lower average rations than non-spawning Baltic cod. The average ration for Baltic cod caught within 11,4 m from the bottom (demersal) did not differ from the average ration of Baltic cod caught in shallower waters (pelagic), because spawning and non-spawning Baltic cod in both strata were caught at equal rates. The diet of the Baltic cod caught demersally contained more benthic invertebrates, especially Saduria entomon, but Baltic cod caught pelagically also had fresh benthic food in their stomachs, indicating vertical migration of individual fish. [source]

Conservation of natural wilderness values in the Port Davey marine and estuarine protected area, south-western Tasmania

Graham J. Edgar
Abstract 1.Port Davey and associated Bathurst Harbour in south-western Tasmania represent one of the world's most anomalous estuarine systems owing to an unusual combination of environmental factors. These include: (i) large uninhabited catchment protected as a National Park; (ii) ria geomorphology but with fjord characteristics that include a shallow entrance and deep 12-km long channel connecting an almost land-locked harbour to the sea; (iii) high rainfall and riverine input that generate strongly-stratified estuarine conditions, with a low-salinity surface layer and marine bottom water; (iv) a deeply tannin-stained surface layer that blocks light penetration to depth; (v) very low levels of nutrients and low aquatic productivity; (vi) weak tidal influences; (vii) marine bottom water with stable temperature throughout the year; (viii) numerous endemic species; (ix) strongly depth-stratified benthic assemblages exhibiting high compositional variability over small spatial scales; (x) deepsea species present at anomalously shallow depths; (xi) no conspicuous introduced taxa; (xii) a predominance of fragile sessile invertebrates, including slow-growing fenestrate bryozoans; and (xii ) sponge spicule- and bryozoan-based sediments that are more characteristic of deep sea and polar environments than those inshore. 2.Although this region has historically been protected by its isolation, seven major anthropogenic stressors now threaten its natural integrity: boating, fishing, dive tourism, nutrient enrichment, introduced species, onshore development, and global climate change. These threats are not randomly distributed but disproportionately affect particular habitat types. 3.For management of environmental risk, the Port Davey,Bathurst Harbour region is subdivided into six biophysical zones, each with different ecological characteristics, values, and types and levels of potential threat. In response to the various threats, the Tasmanian Government has enacted an adaptive management regime that includes a multi-zoned marine protected area and the largest ,no-take' estuarine protected area in Australia. Copyright 2009 John Wiley & Sons, Ltd. [source]

Hydrocarbon Accumulation Conditions of Ordovician Carbonate in Tarim Basin

LI Qiming
Abstract: Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration. [source]

Modern and Holocene hydrographic characteristics of the shallow Kara Sea shelf (Siberia) as reflected by stable isotopes of bivalves and benthic foraminifera

BOREAS, Issue 3 2005
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (,18 O, ,13 C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth. [source]

Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean

BOREAS, Issue 1 2001
Foraminiferal assemblages were studied in northern Barents Sea core ASV 880 along with oxygen and carbon isotope measurements in planktonic (N. pachyderma sin.) and benthic (E clavatum) species. AMS C-14 measurements performed on molluscs Yoldiella spp. show that this core provides a detailed and undisturbed record of Holocene climatic changes over the last 10000 calendar years. Surface and deep waters were very cold (<0C) at the beginning of the Holocene. C. reniforme dominated the highly diverse benthic foraminiferal assemblage. From 10 to 7.8 cal. ka BP, a warming trend culminated in a temperature optimum, which developed between 7.8 and 6.8 cal. ka BP. During this optimum, the input of Atlantic water to the Barents Sea reached its maximum. The Atlantic water mass invaded the whole Franz Victoria Trough and was present from subsurface to the bottom. No bottom water, which would form through rejection of brine during winter, was present at the core depth (388 m). The water stratification was therefore greatly reduced as compared to the present. An increase in percentage of I. helenae/norcrossi points to long seasonal ice-free conditions. The temperature optimum ended rather abruptly, with the return of cold polar waters into the trough within a few centuries. This was accompanied by a dramatic reduction of the abundance of C. reniforme. During the upper Holocene, the more opportunistic species E. clavatum became progressively dominant and the water column was more stratified. Deep water in Franz Victoria Trough contained a significant amount of cold Barents Sea bottom water as it does today, while subsurface water warmed progressively until about 3.7 cal. ka BP and reached temperatures similar to those of today. These long-term climatic changes were cut by several cold events of short duration, in particular one in the middle of the temperature optimum and another, which coincides most probably with the 8.2 ka BP cold event. Both long- and short-term climatic changes in the Barents Sea are associated with changes in the flow of Atlantic waters and the oceanic conveyor belt. [source]

An eastern Tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event

GEOBIOLOGY, Issue 3 2006
ABSTRACT A record of the Early Jurassic mass extinction event is reported from eastern Tethyan (Tibetan) locations for the first time. In the Mount Everest region a thick Lower Jurassic carbonate formation, here named the Yungjia Formation, is developed within the predominantly clastic Triassic,Jurassic succession. Within the formation a sharp transition from peloidal packstones/grainstones to thin-bedded, pyritic micrite-shales interbeds records a sharp pulse of deepening and development of dysoxic bottom waters. Both the lithiotid bivalves and the lituolid foraminifera are important constituents of the lower Yungjia Formation but they disappear at this flooding surface or a short distance below it. This extinction event is comparable to that seen at the base of the Pliensbachian/Toarcian boundary in western Tethyan platform carbonates but the Tibetan events occurred late in the Toarcian Stage as indicated by nannofossil biostratigraphy and C isotope chemostratigraphy. The Early Jurassic extinction event (and the associated spread of oxygen-poor waters) was therefore not synchronous throughout the Tethyan region. [source]

Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes

BOREAS, Issue 3 2008
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300,11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling. [source]