Botrytis Cinerea (Botryti + cinerea)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Botrytis Cinerea

  • fungus Botryti cinerea
  • pathogen Botryti cinerea


  • Selected Abstracts


    Potential Applications of Oxidoreductases for the Re-oxidation of Leuco Vat or Sulfur Dyes in Textile Dyeing

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 3 2008
    F. Xu
    Abstract Conventional textile dyeing by vat and sulfur dyes includes reduction and re-oxidation steps (with chemical reductants and oxidants), so that the insoluble dyes can be solubilized in the dyeing solution, adsorbed by the fabric, and fixed onto the dyed fabric. The treatments often involve hazardous chemicals, expensive catalysts, or conditions that are suboptimally effective, energy-intensive, caustic, or polluting. Improving these steps with enzyme technology could be of significant interest in terms of better dyeing, handling of hazardous chemicals, disposal of waste, or production economy. The idea of an enzymatic re-oxidation step for vat and sulfur dyeings was tested under simplified laboratory conditions. Selected vat and sulfur dyes, including Vat Blue,43, Vat Orange,7, Vat Green,3, Vat Orange,2, Vat Red,13, Vat Yellow,2, and Sulfur Black,1, were first chemically reduced. The reduced (leuco) dyes were then re-oxidized by aerated buffer solutions or H2O2, in the presence or absence of an oxidoreductase, selected from seven laccases from Myceliophthora thermophila, Scytalidium thermophilum, Coprinus cinereus, Trametes villosa, Rhizoctonia solani, Pycnoporus cinnabarinus, Botrytis cinerea, a bilirubin oxidase from Myrothecium verrucaria, and a heme peroxidase from Coprinus cineresu. It was shown that the enzymes were able to catalyze and accelerate the re-oxidation of the reduced dyes, even when they were adsorbed on cotton fabric, by dissolved air (O2) or H2O2. Small redox-active mediators could facilitate the enzymatic re-oxidation. For Sulfur Black,1, a higher conversion of the leuco dye was achieved with laccase-catalyzed re-oxidation. The further development of this potential enzyme application is discussed. [source]


    The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen

    ENVIRONMENTAL MICROBIOLOGY, Issue 1 2010
    Mohamed El Oirdi
    Summary To protect themselves, plants have evolved an armoury of defences in response to pathogens and other stress situations. These include the production of pathogenesis-related (PR) proteins and the accumulation of antimicrobial molecules such as phytoalexins. Here we report that resistance of tobacco to Botrytis cinerea is cultivar specific. Nicotiana tabacum cv. Petit Havana but not N. tabacum cv. Xanthi or cv. samsun is resistant to B. cinerea. This resistance is correlated with the accumulation of the phytoalexin scopoletin and PR proteins. We also show that this resistance depends on the type of B. cinerea stage. Nicotiana tabacum cv. Petit Havana is more resistant to spores than to mycelium of B. cinerea. This reduced resistance of N. tabacum cv. Petit Havana to the mycelium compared with spores is correlated with the suppression of PR proteins accumulation and the capacity of the mycelium, not the spores, to metabolize scopoletin. These data present an important advance in understanding the strategies used by B. cinerea to establish its disease on tobacco plants. [source]


    Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2009
    Marco Kruijt
    Abstract Aims:, Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping-off of cucumber evaluated. Methods and Results:, The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping-off of cucumber, since both wild type strain 267 and its biosurfactant-deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC-MS and MS-MS analyses. Conclusions:, The biosurfactants produced by Ps. putida 267 were identified as putisolvin-like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping-off of cucumber, but the lipopeptide surfactants are not involved in disease suppression. Significance and Impact of the Study:,Pseudomonas putida 267 suppresses Phy. capsici damping-off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin-like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy. capsici and colonization of cucumber roots by Ps. putida 267. These results suggest that Ps. putida 267 employs other, yet uncharacterized, mechanisms to suppress Phy. capsici. [source]


    Survival of spores of Rhizopus stolonifer, Aspergillus niger, Botrytis cinerea and Alternaria alternata after exposure to ethanol solutions at various temperatures

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004
    F. Mlikota Gabler
    Abstract Aims:, To quantify and model the toxicity of brief exposures of spores of Rhizopus stolonifer, Aspergillus niger, Botrytis cinerea and Alternaria alternata to heated, aqueous ethanol solutions. These fungi are common postharvest decay pathogens of fresh grapes and other produce. Sanitation of produce reduces postharvest losses caused by these and other pathogens. Methods and Results:, Spores of the fungi were exposed to solutions containing up to 30% (v/v) ethanol at 25,50°C for 30 s, then their survival was determined by germination on semisolid media. Logistical, second-order surface-response models were prepared for each fungus. Subinhibitory ethanol concentrations at ambient temperatures became inhibitory when heated at temperatures much lower than those that cause thermal destruction of the spores by water alone. At 40°C, the estimated ethanol concentrations that inhibited the germination of 50% (LD50) of the spores of B. cinerea, A. alternata, A. niger and R. stolonifer were 9·7, 13·5, 19·6 and 20·6%, respectively. Conclusions:, Ethanol and heat combinations were synergistic. Control of spores of these fungi could be accomplished with much lower temperatures and ethanol concentrations when combined compared with either used alone. Botrytis cinerea and A. alternata were less resistant to the combination than A. niger or R. stolonifer. [source]


    Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2004
    Y. Touré
    Abstract Aim:, Test of Bacillus subtilis strain GA1 for its potential to control grey mould disease of apple caused by Botrytis cinerea. Methods and Results:, GA1 was first tested for its ability to antagonize in vitro the growth of a wide variety of plant pathogenic fungi responsible for diseases of economical importance. The potential of strain GA1 to reduce post-harvest infection caused by B. cinerea was tested on apples by treating artificially wounded fruits with endospore suspensions. Strain GA1 was very effective at reducing disease incidence during the first 5 days following pathogen inoculation and a 80% protection level was maintained over the next 10 days. Treatment of fruits with an extract of GA1 culture supernatant also exerted a strong preventive effect on the development of grey mould. Further analysis of this extract revealed that strain GA1 produces a wide variety of antifungal lipopeptide isomers from the iturin, fengycin and surfactin families. A strong evidence for the involvement of such compounds in disease reduction arose from the recovery of fengycins from protected fruit sites colonized by bacterial cells. Conclusions:, The results presented here demonstrate that, despite unfavourable pH, B. subtilis endospores inoculated on apple pulp can readily germinate allowing significant cell populations to establish and efficient in vivo synthesis of lipopeptides which could be related to grey mould reduction. Significance and Impact of the Study:, This work enables for the first time to correlate the strong protective effect of a particular B. subtilis strain against grey mould with in situ production of fengycins in infected sites of apple fruits. [source]


    Growth of Botrytis cinerea and Strawberry Quality in Ozone-enriched Atmospheres

    JOURNAL OF FOOD SCIENCE, Issue 5 2003
    A. Nadas
    ABSTRACT Botrytis cinerea cultures were stored on potato dextrose agar in air with or without 1.5 ,L/L ozone at 2 °C. Cultures stored in the presence of ozone grew slower. Strawberry fruits (Fragaria×ananassa cv. Camarosa) were stored for 3 d at 2 °C in air with or without 1.5 ,L/L ozone and then transferred to room temperature. Each group was inoculated with B. cinerea grown in air with or without ozone. Visible mycelial growth developed more rapidly on fruit previously stored in air. Ozone-enriched cold storage of naturally infected ,Camarosa' fruit reduced decay incidence, weight loss, and fruit softening, but resulted in a reversible loss of fruit aroma. [source]


    Purification of Angularin, A Novel Antifungal Peptide from Adzuki Beans

    JOURNAL OF PEPTIDE SCIENCE, Issue 3 2002
    Dr X. Y. Ye
    Abstract An antifungal peptide was isolated from the adzuki bean with a procedure involving affinity chromatography on Affi-gel blue gel and ion exchange chromatography on CM-Sepharose. The protein designated angularin was adsorbed on both types of chromatographic media and possessed a molecular weight of 8 kDa. Angularin exhibited antifungal activity against a variety of fungal species including Mycospharella arachidiocola and Botrytis cinerea. It inhibited mycelial growth in B. cinerea with an IC50 of 14.3 µM. Fusarium oxysporum and Rhizoctonia solani were not inhibited. Angularin demonstrated inhibitory activity on translation in the rabbit reticulocyte lysate system (IC50 = 8.0 µM) but did not affect proliferation of splenocytes. The activity of HIV-1 reverse transcriptase was inhibited in the presence of angularin. Its N -terminal sequence was GEPGQKE. Copyright © 2002 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Acetic Acid, Ethanol and Steam Effects on the Growth of Botrytis cinerea in vitro and Combination of Steam and Modified Atmosphere Packaging to Control Decay in Kiwifruit

    JOURNAL OF PHYTOPATHOLOGY, Issue 2 2009
    Anastasia L. Lagopodi
    Abstract The effects of acetic acid fumigation, ethanol fumigation, and steam heat treatment on growth of Botrytis cinerea in vitro were investigated. The effect of steam heat treatments in combination with modified atmosphere packaging (MAP) on Botrytis decay development on ,Hayward' kiwifruit was also studied. The fungus was grown in Petri dishes on potato dextrose agar. Ethanol fumigation with 100 ,l/l for 3 or 6 min, or 200 ,l/l for 6 min enhanced the growth of B. cinerea. The effect of acetic acid on growth of B. cinerea was time and dosage-dependent. Fumigation with 1 ,l/l for 6 min, 2 ,l/l for 3 min, and 4 ,l/l for 3 min promoted radial growth of the fungus when compared to the growth of the untreated control. Fumigation with 2 ,l/l for 6 min delayed the growth of the fungus for the first 6 days, while fumigation with 6 ,l/l for 3 min delayed the growth of the fungus after the sixth day. Fumigation with 4 or 6 ,l/l acetic acid for 6 min, and 8 ,l/l acetic acid for 3 or 6 min resulted in complete inhibition of fungal growth. Steam heat treatment at 45°C for 6 min, and at 48, 51, and 54°C for 3 or 6 min completely inhibited fungal growth in vitro. Furthermore, steam treatments at 47, 50, and 53°C for 3 or 6 min completely inhibited decay at the stem end of kiwifruit kept at 10°C in MAP for 12 days. However, none of the steam treatments inhibited decay in wounds on the surface of the fruit kept in MAP. [source]


    Age-dependent Grey Mould Susceptibility and Tissue-specific Defence Gene Activation of Grapevine Berry Skins after Infection by Botrytis cinerea

    JOURNAL OF PHYTOPATHOLOGY, Issue 5 2007
    M. Kretschmer
    Abstract The correlation between the degree of maturity of grapevine berries and their susceptibility to infection by the grey mould fungus Botrytis cinerea was studied. Artificial inoculation with B. cinerea conidia of detached berries from cultivars Riesling and Pinot noir revealed an increasing susceptibility during the last weeks of berry ripening. Wound inoculation resulted in increased lesion formation when compared with inoculation of non-wounded berry skins. Lesion development after non-wounding inoculation was stimulated by the addition of nutrients. Riesling berries were more readily infected than Pinot noir berries, indicating that the Riesling berry skin is more easily colonized by the grey mould fungus. Analysis of defence gene activation in the berry skin tissue revealed increased transcript levels of phenylalanine ammonium lyase and stilbene synthase after inoculation with B. cinerea conidia, while mRNA abundance of osmotin was similar in inoculated and non-inoculated tissue. Our data indicate that properties of the grape berry skin, including its ability for infection-induced defence gene activation, are important for the outcome of grey mould infections. [source]


    Incidence, Aggressiveness and In Planta Interactions of Botrytis cinerea and other Filamentous Fungi Quiescent in Grape Berries and Dormant Buds in Central Washington State

    JOURNAL OF PHYTOPATHOLOGY, Issue 7 2002
    F. M. Dugan
    Abstract Recovery of quiescent filamentous fungi from non-symptomatic grape berries and dormant buds demonstrated dominance of Alternaria, Aureobasidium, Cladosporium, Ulocladium and other dematiaceous hyphomycetes. Up to 78% of berries contained fungi prior to harvest. Botrytis cinerea was recovered from 0.2 to 0.5% of surface-disinfested berries just subsequent to fruit set, and 1.6,4.8% of surface-disinfested, over-wintered dormant buds. In laboratory inoculations of mature grape berries with strains of Alternaria, Aureobasidium, Cladosporium, Ulocladium and Botrytis, only the latter was aggressive in rotting berry fruits. Inoculations with B. cinerea alone and in combination with strains of Alternaria, Aureobasidium, Cladosporium and Ulocladium recovered from grape demonstrated that prior occupation of wound sites by the latter fungi resulted in reduced lesion size compared to inoculation with B. cinerea alone. [source]


    Antifungal Activity of a Bowman,Birk-type Trypsin Inhibitor from Wheat Kernel

    JOURNAL OF PHYTOPATHOLOGY, Issue 7-8 2000
    G. Chilosi
    A trypsin inhibitor from wheat kernel (WTI) was found to have a strong antifungal activity against a number of pathogenic fungi and to inhibit fungal trypsin-like activity. WTI inhibited in vitro spore germination and hyphal growth of pathogens, with protein concentration required for 50% growth inhibition (IC50) values ranging from 111.7 to above 500 ,g/ml. As observed by electron microscopy, WTI determined morphological alterations represented by hyphal growth inhibition and branching. One of the fungal species tested, Botrytis cinerea produced a trypsin-like protease, which was inhibited by the trypsin inhibitor. WTI, as well as other seed defence proteins, appear to be an important resistance factor in wheat kernels during rest and early germination when plants are particularly exposed to attack by potential soil-borne pathogens. Zusammenfassung Ein Trypsinhemmer aus Weizenkörnern (WTI) zeigte eine starke antifungale Aktivität gegenüber verschiedenen pathogenen Pilzen und hemmte deren trypsinähnliche Aktivität. WTI hemmte in vitro die Sporenkeimung und das Hyphenwachstum der Pathogene, wobei die IC50 -Werte zwischen 111,7 und mehr als 500 ,g/ml lagen. Elektronenmikroskopische Untersuchungen zeigten, dai WTI morphologische Veränderungen bewirkte, die aus einer Hemmung des Hyphenwachstums und einer veränderten Verzweigung bestanden. Eine der untersuchten Pilzarten, Botrytis cinerea, bildete eine trypsinähnliche Protease, die durch den Trypsininhibitor gehemmt wurde. Ebenso wie andere sameneigene Abwehrproteine scheint WTI während der Keimruhe und in den frühen Stadien der Keimung, wenn die Pflanzen gegenüber möglichen bodenbürtigen Pathogenen besonders exponiert sind, ein wichtiger Resistenzfaktor in Weizenkörnern zu sein. [source]


    Oxidative effects in uninfected tissue in leaves of French bean (Phaseolus vulgaris) containing soft rots caused by Botrytis cinerea

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2003
    Ingo Muckenschnabel
    Abstract Several markers of oxidative processes have been measured in leaves of Phaseolus vulgaris infected with Botrytis cinerea, with the specific objective of investigating changes induced by this necrotrophic pathogen in tissue remote from the lesion. There was a progressive decrease with time in the contents of ascorbic acid (AA) in apparently healthy tissues from infected plants and non-inoculated plants grown under identical high-humidity conditions (abiotically stressed controls), and for periods >48 h this decrease was greater in the infected plants. This decline in AA content was accompanied by an elevation in the intensity of the electron paramagnetic resonance (EPR) signal from adducts of the spin trap ,-(4-pyridyl-1-oxide)- N - t -butylnitrone (POBN), a destabilisation of the (monodehydro) ascorbate radical (Asc·) signal in the presence of POBN, and an increase in the ratio of Asc· to AA in samples studied in the absence of the spin trap. These results are consistent with a shift in redox status to more oxidising conditions in apparently healthy tissue of infected plants and indicate the prevalence of chemical processes that are distinctly different from those in uninfected plants. However, no differences in lipid peroxidation products or the single-peak free radical and Fe(III) (g = 4.27) EPR signals were observed between these tissues distant from the lesions and those from abiotically stressed controls. In addition, the pathogen-derived sesquiterpene toxin botrydial and a second Mn(II) EPR signal, both of which are associated with Botrytis infection, were not detected in these ,apparently healthy' tissues. Copyright © 2003 Society of Chemical Industry [source]


    Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections

    LETTERS IN APPLIED MICROBIOLOGY, Issue 3 2010
    H.M. Liu
    Abstract Aims:, To investigate the effect of tea polyphenol (TP) and Hanseniaspora uvarum alone or in combination against Botrytis cinerea in grapes and to evaluate the possible mechanisms involved. Methods and Results:, TP alone was effective in controlling grey mould in grape at all concentrations. TP at 0·5 and 1·0% in combination with H. uvarum (1 × 106 CFU ml,1) showed a lower infection rate of grey mould. TP at 0·01% or above significantly inhibited the spore germination of B. cinerea. TP at 0·1% showed inhibition ability on mycelium growth of B. cinerea. The addition of TP did not affect the growth of H. uvarum in vitro and significantly increased the population of H. uvarum in vivo. Conclusions:, TP exhibited an inhibitory effect against B. cinerea and improved the biocontrol efficacy of H. uvarum. The inhibitory effects of spore germination and mycelial growth of B. cinerea and the increased populations of H. uvarum in vivo may be some of the important mechanisms of TP. Significance and Impact of the Study:, The results suggested that TP alone or in combination with biocontrol agents has great potential in the commercial management of postharvest diseases of fruits. [source]


    The potential biocontrol agent Pseudomonas antimicrobica inhibits germination of conidia and outgrowth of Botrytis cinerea

    LETTERS IN APPLIED MICROBIOLOGY, Issue 5 2001
    Walker
    Aims:,Antifungal metabolites of Pseudomonas antimicrobica have previously been shown to inhibit conidial germination of the grey mould pathogen Botrytis cinerea. In this study, metabolites of the bacterium have been tested at different stages of Botrytis germination to determine their effects on germ tube production and extension. Methods and Results:,Metabolites were added to conidia that had been pre-incubated for either 120 or 255 min. Pseudomonas antimicrobica inhibited B. cinerea conidial germination and caused a significant reduction in germ tube extension, irrespective of the stage of germination. Abnormal germination and a reduction in the frequency of lateral branching of the germ tubes in the presence of the metabolites were also reported, suggesting interference with normal hyphal development. Conclusions: The bacterium can inhibit germination of conidia and extension of germ tubes at different stages of Botrytis development. Significance and Impact of the Study:,The antagonistic activity of the bacterium has promising implications for its use as a biocontrol agent. [source]


    Fungicide activity through activation of a fungal signalling pathway

    MOLECULAR MICROBIOLOGY, Issue 6 2004
    Kaihei Kojima
    Summary Fungicides generally inhibit enzymatic reactions involved in fungal cellular biosynthesis. Here we report, for the first time, an example of fungicidal effects through hyperactivation of a fungal signal transduction pathway. The OSC1 gene, encoding a MAP kinase (MAPK) related to yeast Hog1, was isolated from the fungal pathogen Colletotrichum lagenarium that causes cucumber anthracnose. The osc1 knockout mutants were sensitive to high osmotic stress and showed increased resistance to the fungicide fludioxonil, indicating that Osc1 is involved in responses to hyperosmotic stress and sensitivity to fludioxonil. The Osc1 MAPK is phosphorylated under high osmotic conditions, indicating activation of Osc1 by high osmotic stress. Importantly, fludioxonil treatment also activates phosphorylation of Osc1, suggesting that improper activation of Osc1 by fludioxonil has negative effects on fungal growth. In the presence of fludioxonil, the wild-type fungus was not able to infect the host plant because of a failure of appressorium-mediated penetration, whereas osc1 mutants successfully infected plants. Analysis using a OSC1- GFP fusion gene indicated that Osc1 is rapidly translocated to the nucleus in appressorial cells after the addition of fludioxonil, suggesting that fludioxonil impairs the function of infection structures by activation of Osc1. Furthermore, fludioxonil activates Hog1-type MAPKs in the plant pathogenic fungi Cochliobolus heterostrophus and Botrytis cinerea. These results strongly suggest that fludioxonil acts as a fungicide, in part, through activation of the MAPK cascade in fungal pathogens. [source]


    The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves

    MOLECULAR MICROBIOLOGY, Issue 3 2004
    M. Gourgues
    Summary Animal tetraspanins are membrane proteins controlling cell adhesion, morphology and motility. In fungi, the tetraspanin MgPls1 controls an appressorial function required for the penetration of Magnaporthe grisea into host plants. An orthologue of MgPLS1, BcPLS1, was identified in the necrotrophic fungal plant pathogen Botrytis cinerea. We constructed a Bcpls1::bar null mutant by targeted gene replacement. Bcpls1::bar is not pathogenic on intact plant tissues of bean, tomato or rose, but it infects wounded plant tissues. Both wild type and Bcpls1::bar differentiate appressoria on plant and artificial surfaces, a process involving an arrest of polarized growth, apex swelling and its cell wall reinforcement. Although wild-type appressoria allowed the penetration of the fungus into the host plant within 6,12 h, no successful penetration events were observed with Bcpls1::bar, suggesting that its appressoria are not functional. An eGFP transcriptional fusion showed that BcPLS1 was specifically expressed in conidia, germ tubes and appressoria during host penetration. Our results indicate that BcPLS1 is required for the penetration of B. cinerea into intact host plants. The defect in pathogenicity of Bcpls1::bar also demonstrates that functional B. cinerea appressoria are required for a successful penetration process. As Bcpls1::bar and Mgpls1,::hph penetration defects are similar, fungal tetraspanins are likely to be required for an essential appressorial function widespread among fungi. [source]


    The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea

    MOLECULAR PLANT PATHOLOGY, Issue 1 2010
    ASTRID SCHAMBER
    SUMMARY In all fungi studied so far, mitogen-activated protein (MAP) kinase cascades serve as central signalling complexes that are involved in various aspects of growth, stress response and infection. In this work, putative components of the yeast Fus3/Kss1-type MAP kinase cascade and the putative downstream transcription factor Ste12 were analysed in the grey mould fungus Botrytis cinerea. Deletion mutants of the MAP triple kinase Ste11, the MAP kinase kinase Ste7 and the MAP kinase adaptor protein Ste50 all resulted in phenotypes similar to that of the previously described BMP1 MAP kinase mutant, namely defects in germination, delayed vegetative growth, reduced size of conidia, lack of sclerotia formation and loss of pathogenicity. Mutants lacking Ste12 showed normal germination, but delayed infection as a result of low penetration efficiency. Two differently spliced ste12 transcripts were detected, and both were able to complement the ste12 mutant, except for a defect in sclerotium formation, which was only corrected by the full-sized transcript. Overexpression of the smaller ste12 transcript resulted in delayed germination and strongly reduced infection. Bc-Gas2, a homologue of Magnaporthe grisea Gas2 that is required for appressorial function, was found to be non-essential for growth and infection, but its expression was under the control of both Bmp1 and Ste12. In summary, the role and regulatory connections of the Fus3/Kss1-type MAP kinase cascade in B. cinerea revealed both common and unique properties compared with those of other plant pathogenic fungi, and provide evidence for a regulatory link between the BMP1 MAP kinase cascade and Ste12. [source]


    Botrytis cinerea: the cause of grey mould disease

    MOLECULAR PLANT PATHOLOGY, Issue 5 2007
    BRIAN WILLIAMSON
    SUMMARY Introduction:,Botrytis cinerea (teleomorph: Botryotinia fuckeliana) is an airborne plant pathogen with a necrotrophic lifestyle attacking over 200 crop hosts worldwide. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. It has become an important model for molecular study of necrotrophic fungi. Taxonomy:, Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botryotinia. Host range and symptoms: Over 200 mainly dicotyledonous plant species, including important protein, oil, fibre and horticultural crops, are affected in temperate and subtropical regions. It can cause soft rotting of all aerial plant parts, and rotting of vegetables, fruits and flowers post-harvest to produce prolific grey conidiophores and (macro)conidia typical of the disease. Pathogenicity:,B. cinerea produces a range of cell-wall-degrading enzymes, toxins and other low-molecular-weight compounds such as oxalic acid. New evidence suggests that the pathogen triggers the host to induce programmed cell death as an attack strategy. Resistance:, There are few examples of robust genetic host resistance, but recent work has identified quantitative trait loci in tomato that offer new approaches for stable polygenic resistance in future. Useful websites:,http://www.phi-base.org/query.php, http://www.broad.mit.edu/annotation/genome/botrytis_cinerea/Home.html, http://urgi.versailles.inra.fr/projects/Botrytis/, http://cogeme.ex.ac.uk [source]


    Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization

    NEW PHYTOLOGIST, Issue 3 2008
    Pari Skamnioti
    Summary ,,The cuticle is the first barrier for fungi that parasitize plants systematically or opportunistically. Here, the evolutionary history is reported of the multimembered cutinase families of the plant pathogenic Ascomycetes Magnaporthe grisea, Fusarium graminearum and Botrytis cinerea and the saprotrophic Ascomycetes Aspergillus nidulans and Neurospora crassa. ,,Molecular taxonomy of all fungal cutinases demonstrates a clear division into two ancient subfamilies. No evidence was found for lateral gene transfer from prokaryotes. The cutinases in the five Ascomycetes show significant copy number variation, they form six clades and their extreme sequence diversity is highlighted by the lack of consensus intron. The average ratio of gene duplication to loss is 2 : 3, with the exception of M. grisea and N. crassa, which exhibit extreme family expansion and contraction, respectively. ,,Detailed transcript profiling in vivo, categorizes the M. grisea cutinases into four regulatory patterns. Symmetric or asymmetric expression profiles of phylogenetically related cutinase genes suggest subfunctionalization and neofunctionalization, respectively. ,,The cutinase family-size per fungal species is discussed in relation to genome characteristics and lifestyle. The ancestry of the cutinase gene family, together with the expression divergence of its individual members provides a first insight into the drivers for niche differentiation in fungi. [source]


    Transfer of the ,-tubulin gene of Botrytis cinerea with resistance to carbendazim into Fusarium graminearum

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2010
    Sheng-Ming Liu
    Abstract BACKGROUND: Resistance to carbendazim and other benzimidazole fungicides in Botrytis cinerea (Pers. ex Fr.) and most other fungi is usually conferred by mutation(s) in a single chromosomal ,-tubulin gene, often with several allelic mutations. In Fusarium graminearum Schwade, however, carbendazim resistance is not associated with a mutation in the corresponding ,-tubulin gene. RESULTS: The ,-tubulin gene conferring carbendazim resistance in B. cinerea was cloned and connected with two homologous arms of the ,-tubulin gene of F. graminearum by using a double-joint polymerase chain reaction (PCR). This fragment was transferred into F. graminearum via homologous double crossover at the site where the ,-tubulin gene of F. graminearum is normally located (the ,-tubulin gene of F. graminearum had been deleted). The transformants were confirmed and tested for their sensitivity to carbendazim. CONCLUSION: The ,-tubulin gene conferring carbendazim resistance in B. cinerea could not express this resistance in F. graminearum, as transformants were still very sensitive to carbendazim. Copyright © 2010 Society of Chemical Industry [source]


    Inhibitory effect of bionic fungicide 2-allylphenol on Botrytis cinerea (Pers. ex Fr.) in vitro,

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2009
    Shuangjun Gong
    Abstract BACKGROUND: 2-Allylphenol is a registered fungicide in China to control fungal diseases on tomato, strawberry and apple. It is synthetic and structurally resembles the active ingredient ginkgol isolated from Ginkgo biloba L. bark. 2-Allylphenol has been used in China for 10 years. However, its biochemical mode of action remains unclear. An in vitro study was conducted on the biochemical mechanism of 2-allyphenol inhibiting Botrytis cinerea (Pers. ex Fr.). RESULTS: The inhibition was approximately 3 times stronger when the fungus was grown on non-fermentable source, glycerol, than that on a fermentable carbon source, glucose. Inhibition of B. cinerea and Magnaporthe oryzae (Hebert) Barr mycelial growth was markedly potentiated in the presence of salicylhydroxamic acid (SHAM), an inhibitor of mitochondrial alternative oxidase. Furthermore, at 3 h after treatment with 2-allylphenol, oxygen consumption had recovered, but respiration was resistant to potassium cyanide and sensitive to SHAM, indicating that 2-allylphenol had the ability to induce cyanide-resistant respiration. The mycelium inhibited in the presence of 2-allylphenol grew vigorously after being transferred to a fungicide-free medium, indicating that 2-allylphenol is a fungistatic compound. Adenine nucleotide assay showed that 2-allylphenol depleted ATP content and decreased the energy charge values, which confirmed that 2-allylphenol is involved in the impairment of the ATP energy generation system. CONCLUSION: These results suggested that 2-allylphenol induces cyanide-resistant respiration and causes ATP decrease, and inhibits respiration by an unidentified mechanism. Copyright © 2009 Society of Chemical Industry [source]


    Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2009
    Hideo Ishii
    Abstract BACKGROUND: In 2004, field isolates of Botrytis cinerea Pers. ex Fr., resistant to strobilurin fungicides (QoIs), were first found in commercial citrus orchards in Wakayama Prefecture, Japan. Subsequently, QoI-resistant isolates of this fungus were also detected in plastic strawberry greenhouses in Saga, Ibaraki and Chiba prefectures, Japan. Biological and molecular characterisation of resistant isolates was conducted in this study. RESULTS: QoI-resistant isolates of B. cinerea grew well on PDA plates containing kresoxim-methyl or azoxystrobin at 1 mg L,1, supplemented with 1 mM of n -propyl gallate, an inhibitor of alternative oxidase, whereas the growth of sensitive isolates was strongly suppressed. Results from this in vitro test were in good agreement with those of fungus inoculation tests in vivo. In resistant isolates, the mutation at amino acid position 143 of the cytochrome b gene, known to be the cause of high QoI resistance in various fungal pathogens, was found, but only occasionally. The heteroplasmy of cytochrome b gene was confirmed, and the wild-type sequence often present in the majority of resistant isolates, indicating that the proportion of mutated cytochrome b gene was very low. CONCLUSION: The conventional RFLP and sequence analyses of PCR-amplified cytochrome b gene are insufficient for molecular identification of QoI resistance in B. cinerea. Copyright © 2009 Society of Chemical Industry [source]


    Metabolism of fungicidal cyanooximes, cymoxanil and analogues in various strains of Botrytis cinerea

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 2 2009
    Frédérique Tellier
    Abstract BACKGROUND: The metabolism of cymoxanil [1-(2-cyano-2-methoxyiminoacetyl)-3-ethylurea] and fungicidal cyanooxime analogues was monitored on three phenotypes of Botrytis cinerea Pers. ex Fr. differing in their sensitivity towards cymoxanil. For this purpose, labelled [2- 14C]cymoxanil was added either to the culture medium of these strains or to its cell-free extract. RESULTS: In the culture medium of the most sensitive strain, four main metabolites were detected. Three were isolated and identified. Cymoxanil was quickly metabolised by at least three concurrent enzymatic pathways: (i) cyclisation leading, after hydrolysis, to ethylparabanic acid, (ii) reduction giving demethoxylated cymoxanil, (iii) hydrolysis followed by reduction and then acetylation leading to N -acetylcyanoglycine. In the cell-free extract of the same strain, only the first and the second of these enzymatic reactions occurred. By comparing the metabolic profile of the most sensitive strain with that of the less sensitive ones, it was shown that the decrease in sensitivity to cymoxanil correlates with a reduced acetylcyanoglycine formation. Among all metabolites, only N -acetylcyanoglycine is active against the most sensitive strain. Moreover, in a culture of this strain, two other fungicidal cyanooximes were also metabolised into this metabolite. CONCLUSION: The formation of N -acetylcyanoglycine may play an important role in the fungitoxicity of cymoxanil and cyanooxime derivatives. Copyright © 2008 Society of Chemical Industry [source]


    Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 2 2009
    Seiya Saito
    Abstract BACKGROUND: Grey mould caused by the fungus Botrytis cinerea Pers. ex Fr. is one of the major diseases in grapes. The use of fungicides is a simple strategy to protect grapes against B. cinerea disease. However, phenotypes exhibiting resistance to fungicides have been detected in B. cinerea populations. The variation of fungicide-resistant B. cinerea isolates renders B. cinerea disease control difficult in grapevine fields. RESULTS: The authors have developed a nested polymerase chain reaction,restriction fragment length polymorphism (PCR-RFLP) method to detect fungicide-resistant B. cinerea isolates at an early growth stage of grapes in grapevine fields. The nested PCR-RFLP method was carried out to detect benzimidazole-, phenylcarbamate- and/or dicarboximide-resistant B. cinerea isolates from grape berries and leaves at Eichorn,Lorenz growth stage 25 to 29. This method successfully detected fungicide-resistant B. cinerea isolates at an early growth stage of grapes. In addition, only 8 h was required from tissue sampling to phenotyping of fungicide resistance of the isolates. CONCLUSION: It is proposed that the early diagnosis of fungicide-resistant B. cinerea isolates would contribute to further improvement of integrated pest management against B. cinerea in grapevine fields, and that the nested PCR-RFLP method is a high-speed, sensitive and reliable tool for this purpose. Copyright © 2008 Society of Chemical Industry [source]


    Screening study for potential lead compounds for natural product-based fungicides: I. Synthesis and in vitro evaluation of coumarins against Botrytis cinerea,

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2004
    Mourad Daoubi
    Abstract An efficient, one-pot synthesis of angular and linear dihydropyranocoumarins, along with C-6 and C-8 prenylated coumarins is reported. These compounds, together with single- and furanocoumarins, were tested for their potential antifungal activity against the phytopathogen Botrytis cinerea Pers ex Fr. The results show that furanocoumarins may be able to control the fungus B cinerea. Copyright © 2004 Society of Chemical Industry [source]


    Control of post-harvest decay of apples by pre-harvest and post-harvest application of ammonium molybdate

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2001
    Carla Nunes
    Abstract Ammonium molybdate was tested as a potential fungicide for use in apples (cv Golden Delicious) against blue and grey mould, important post-harvest diseases of pome fruits. In tests in vivo at 20,°C, ammonium molybdate (15,mM) reduced lesion diameters of Penicillium expansum, Botrytis cinerea and Rhizopus stolonifer by 84%, 88% and 100% respectively. When apples treated with ammonium molybdate were stored at 1,°C for three months, a significant reduction in severity and incidence of P expansum and B cinerea was observed in both years of study (1998 and 1999). In the second year of the experiment the reduction in disease severity was greater than 88% for both pathogens, and the level of control was similar to, or greater than, that observed with the fungicide imazalil. When ammonium molybdate was applied as a pre-harvest treatment, a significant reduction in blue mould decay was observed after three months in cold storage. In vitro, ammonium molybdate greatly inhibited spore germination of P expansum and B cinerea, although better inhibition was obtained against grey mould. Ammonium dimolybdate, sodium molybdate and potassium molybdate were also tested in vitro in comparison with ammonium molybdate as inhibitors of spore germination, but only ammonium molybdate inhibited spore germination by more than 50%. © 2001 Society of Chemical Industry [source]


    The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2001
    T Vermeulen
    Abstract This study demonstrates that the ATP-binding cassette (ABC) transporter BcatrB from Botrytis cinerea influences the activity of phenylpyrrole fungicides against the pathogen. This conclusion is based on toxicity assays and northern analysis experiments which show that BcatrB replacement mutants, which do not express the BcatrB gene, show an increased sensitivity to the phenylpyrrole fungicides fludioxonil and fenpiclonil. Mutants overexpressing BcatrB exhibit a decreased sensitivity to these fungicides. In addition, accumulation of fludioxonil by BcatrB replacement mutants was higher than by wild-type isolates. For mutants overexpressing BcatrB the reverse was observed. Additional ABC and major facilitator superfamily (MFS) transporter genes were identified in an expressed sequence tag (EST) database, suggesting that B cinerea has gene families of ABC and MFS transporters. Corresponding fragments of ten ABC (BcatrC,BcatrN) and three MFS transporter genes (Bcmfs1,4) were cloned and characterised. Fludioxonil affected the transcript level of some members of these gene families in germlings during a short treatment with the fungicide at sub-lethal concentrations. Hence, other ABC and MFS transporters may affect the activity of phenylpyrrole fungicides as well. Other fungicides such as the anilinopyrimidine fungicide cyprodinil, the azole fungicide tebuconazole, the dicarboximide fungicide iprodione and the strobilurin fungicide trifloxystrobin also induced transcription of some of the ABC and MFS transporter genes identified. Therefore, we propose that various ABC and MFS transporters function in protection of the fungus against fungicides and are involved in multi-drug resistance development. © 2001 Society of Chemical Industry [source]


    Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross-protection

    PLANT CELL & ENVIRONMENT, Issue 11 2007
    DORIANA FRANCIA
    ABSTRACT Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant,pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen. [source]


    Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene

    PLANT PATHOLOGY, Issue 1 2009
    S. Banno
    Botrytis cinerea field isolates collected in Japan were screened for resistance to Qo inhibitor fungicides (QoIs). Of the 198 isolates screened, six grew well on a medium containing azoxystrobin, a QoI, when salicylhydroxamic acid, an alternative oxidase inhibitor, was present. The resistance mutation in the cytochrome b gene (cytb) was characterized. All QoI-resistant isolates had the same mutation (GGT to GCT) in cytb that led to the substitution of glycine by alanine at position 143 of cytochrome b, which is known to confer QoI resistance in plant pathogens. To detect this mutation, a hybridization probe assay based on real-time PCR amplification and melting curve analysis was developed. Using DNA samples prepared from aubergines coinfected with QoI-resistant and QoI-sensitive B. cinerea isolates, two similar peak profiles with their corresponding melting temperatures were obtained. This result suggests that QoI-resistant and QoI-sensitive isolates may compete equally in terms of pathogenicity, and the assay may be used to assess the population ratio of mutant and wild-type isolates. However, the hybridization probe did not anneal to PCR products derived from the DNA samples of some QoI-sensitive isolates. Structural analysis of cytb revealed that B. cinerea field isolates could be classified into two groups: one with three introns and the other with an additional intron (Bcbi-143/144 intron) inserted between the 143rd and 144th codons. All 88 isolates possessing the Bcbi-143/144 intron were azoxystrobin-sensitive, suggesting that the QoI-resistant mutation at codon 143 in cytb prevents self-splicing of the Bcbi-143/144 intron, as proposed in some other plant pathogens. [source]


    Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid

    PLANT PATHOLOGY, Issue 4 2007
    C. Q. Zhang
    Between 2004 and 2006, 228 isolates of Botrytis cinerea from two regions in China were characterized for baseline sensitivity to boscalid, a new active ingredient that interferes with succinate ubiquinone reductase in the electron transport chain. The isolates showed similar sensitivity in different years and regions. Baseline sensitivities were distributed as unimodal curves with mean EC50 values of 1·07 (± 0·11) and 0·42 (± 0·05) mg L,1 for inhibition of mycelial growth and conidial germination, respectively. Laboratory studies were conducted to evaluate the risk of development of resistance to boscalid. Boscalid-resistant mutants were obtained by UV-treatment at lower frequencies and with smaller resistance factors than pyrimethanil-resistant mutants. All boscalid-resistant mutants were also significantly more sensitive to Qo inhibitors than their wild-type parents and showed reduced sporulation in vitro and pathogenicity on aubergine leaves. The results suggested that the risk of resistance developing for boscalid was lower than for pyrimethanil. However, as B. cinerea is a high-risk pathogen, appropriate precautions against resistance development should be taken. Synergism between the activity of boscalid and that of kresoxim-methyl was observed. [source]