Bone Shaft (bone + shaft)

Distribution by Scientific Domains


Selected Abstracts


Long-Term Leisure Time Physical Activity and Properties of Bone: A Twin Study,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2009
Hongqiang Ma
Abstract Effects of physical activity on bone properties, when controlled for genetic effects, are not fully understood. We aimed to study the association between long-term leisure time physical activity (LTPA) and bone properties using twin pairs known to be discordant for leisure time physical activity for at least 30 yr. Volumetric BMD and geometric properties were measured at the tibia shaft and distal end using pQCT in 16 middle-aged (50,74 yr) same-sex twin pairs (seven monozygotic [MZ] and nine dizygotic [DZ] pairs) selected from a population-based cohort. Paired differences between active and inactive co-twins were studied. Active members of MZ twin pairs had larger cortical bone cross-sectional area (intrapair difference: 8%, p = 0.006), thicker cortex (12%, p = 0.003), and greater moment of inertia (Imax, 20%, p = 0.024) at the tibia shaft than their inactive co-twins. At the distal tibia, trabecular BMD (12%, p = 0.050) and compressive strength index (18%, p = 0.038) were also higher in physically active MZ pair members than their inactive co-twins. The trends were similar, but less consistently so, in DZ pairs as in MZ pairs. Our genetically controlled study design shows that LTPA during adulthood strengthens bones in a site-specific manner, that is, the long bone shaft has a thicker cortex, and thus higher bending strength, whereas the distal bone has higher trabecular density and compressive strength. These results suggest that LTPA has a potential causal role in decreasing the long-term risk of osteoporosis and thus preventing osteoporotic fractures. [source]


Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Luca Bondioli
Abstract Qualitative and quantitative characterization through functional imaging of mineralized tissues is of potential value in the study of the odontoskeletal remains. This technique, widely developed in the medical field, allows the bi-dimensional, planar representation of some local morphometric properties, i.e., topographic thickness variation, of a three-dimensional object, such as a long bone shaft. Nonetheless, the use of morphometric maps is still limited in (paleo)anthropology, and their feasibility has not been adequately tested on fossil specimens. Using high-resolution microtomographic images, here we apply bi-dimensional virtual "unrolling" and synthetic thickness mapping techniques to compare cortical bone topographic variation across the shaft in a modern and a fossil human adult femur (the Magdalenian from Chancelade). We also test, for the first time, the possibility to virtually unroll and assess for dentine thickness variation in modern and fossil (the Neanderthal child from Roc de Marsal) human deciduous tooth roots. The analyses demonstrate the feasibility of using two-dimensional morphometric maps for the synthetic functional imaging and comparative biomechanical interpretation of cortical bone thickness variation in extant and fossil specimens and show the interest of using this technique also for the subtle characterization of root architecture and dentine topography. More specifically, our preliminary results support the use of virtual cartography as a tool for assessing to what extent internal root morphology is capable of responding to loading and directional stresses and strains in a predictable way. Am J Phys Anthropol, 2010. © 2010 Wiley-Liss, Inc. [source]


Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor ,,induced osteophytes: Limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation

ARTHRITIS & RHEUMATISM, Issue 12 2007
E. N. Blaney Davidson
Objective Osteoarthritis (OA) is characterized by cartilage damage, synovial fibrosis, and osteophyte formation. Both transforming growth factor , (TGF,) and bone morphogenetic protein 2 (BMP-2) can induce the formation of osteophytes during OA, but their specific role in this process is unclear. The purpose of this study was to investigate the respective contributions of TGF, and BMP-2 to OA. Methods Mouse knee joints injected with adenovirus (Ad-TGF, or Ad-BMP-2) were compared histologically with knee joints from murine models of OA (joints injected with collagenase and joints from STR/Ort mice with spontaneous OA). To further investigate the role of BMP during osteophyte formation, adenovirus Ad-Gremlin was injected into knee joints that had previously been injected with Ad-TGF, or collagenase. Results BMP-2 induced early osteophytes, which bulged from the growth plates on the femur and grew on top of the patella, whereas TGF, induced early osteophyte formation on the bone shaft beneath the collateral ligament on the femur as well as on top of the patella. The pattern of osteophyte formation during experimental OA closely resembled that of TGF,-induced osteophyte formation, but differed from the pattern induced by BMP-2. Ad-Gremlin proved to be able to totally block BMP-2,induced osteophyte formation. However, blocking BMP activity inhibited neither TGF,-induced nor experimental OA,associated osteophyte formation. Conclusion Our findings demonstrate that the role of BMP during the onset of TGF,-induced and experimental OA,induced osteophyte formation is limited. The latter finding does not rule out a role of BMP during osteophyte maturation. [source]


Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Luca Bondioli
Abstract Qualitative and quantitative characterization through functional imaging of mineralized tissues is of potential value in the study of the odontoskeletal remains. This technique, widely developed in the medical field, allows the bi-dimensional, planar representation of some local morphometric properties, i.e., topographic thickness variation, of a three-dimensional object, such as a long bone shaft. Nonetheless, the use of morphometric maps is still limited in (paleo)anthropology, and their feasibility has not been adequately tested on fossil specimens. Using high-resolution microtomographic images, here we apply bi-dimensional virtual "unrolling" and synthetic thickness mapping techniques to compare cortical bone topographic variation across the shaft in a modern and a fossil human adult femur (the Magdalenian from Chancelade). We also test, for the first time, the possibility to virtually unroll and assess for dentine thickness variation in modern and fossil (the Neanderthal child from Roc de Marsal) human deciduous tooth roots. The analyses demonstrate the feasibility of using two-dimensional morphometric maps for the synthetic functional imaging and comparative biomechanical interpretation of cortical bone thickness variation in extant and fossil specimens and show the interest of using this technique also for the subtle characterization of root architecture and dentine topography. More specifically, our preliminary results support the use of virtual cartography as a tool for assessing to what extent internal root morphology is capable of responding to loading and directional stresses and strains in a predictable way. Am J Phys Anthropol, 2010. © 2010 Wiley-Liss, Inc. [source]