Bone Resorption Activity (bone + resorption_activity)

Distribution by Scientific Domains


Selected Abstracts


Bone resorption activity of osteolytic metastatic lung and breast cancers

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2004
Lih-Yuann Shih
Abstract Production of bone resorption mediators and bone resorption activity were compared among osteolytic metastatic cancers, normal bone tissues, and soft tissue metastatic cancers to search for the possible factors leading to cancer-induced bone resorption. Twenty-five patients with untreated osteolytic metastatic breast or non-small cell lung cancers consisted of the study group. Normal bone tissues obtained from the same patient were used as internal controls; and tumor tissues from patients with soft tissue metastasis were used as external controls. Serum and urinary bone turnover markers were measured. Tissues harvested during surgery were subjected to tissue culture. The levels of prostaglandin E2 (PGE2), tumor necrosis factor-, (TNF-,), and interleukin-6 (IL-6) in the supernatant after 72 h of culture were measured. Bone resorption activity was measured by calcium release from cultured calvarias, and bone volume as well as osteoclast number in bone sections. Patients with osteolytic metastatic cancers showed significantly decreased serum osteocalcin, increased serum alkaline phosphatase, and urinary deoxypyridinoline levels. Osteolytic metastatic cancers produced significantly more PGE2 than both controls. Conditioned medium from osteolytic metastatic tumors showed significantly enhanced bone resorption activity, and indomethacin significantly reduced this activity. Levels of PGE2, and bone resorption activity increased in osteolytic tumor tissues than soft tissue metastatic tissues in the same patient indicated that the same tumor cells might respond differently to different microenvironments. Our observation showed that PGE2 was produced by osteolytic metastatic cancers and stimulated bone resorption in mice calvarias. PGE2 inhibitor may be applicable in reducing bone resorption by osteolytic metastatic cancers. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Expression of Mouse Osteoclast K-Cl Co-Transporter-1 and Its Role During Bone Resorption,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2006
Hiroshi Kajiya PhD
Abstract To assess the role of Cl, transport during osteoclastic bone resorption, we studied the expression and function of K+/Cl, co-transporters (KCCs). KCC1 and chloride channel-7 were found to be expressed in mouse osteoclasts. The KCC inhibitor, R(+)-butylindazone (DIOA), KCC1 antisense oligo-nucleotides, and siRNA suppressed osteoclastic pit formation. DIOA also decreased Cl, extrusion and reduced H+ extrusion activity. These results show that KCC1 provides a Cl, extrusion mechanism accompanying the H+ extrusion during bone resorption. Introduction: Mice with deficient chloride (Cl,) channels, ClC7, show severe osteopetrosis, resulting from impairment of Cl, extrusion during osteoclastic bone resorption. However, the expression and functional role of Cl, transporters other than ClC7 in mammalian osteoclasts is unknown. The aim of this study was to determine expression of K+/Cl, co-transporters (KCCs) and their functional role for bone resorption in mouse osteoclasts. Materials and Methods: Mouse osteoclasts were derived from cultured bone marrow cells with macrophage-colony stimulating factor (M-CSF) and RANKL or from co-culture of bone marrow cells and primary osteoblasts. We examined the expression of Cl, transporters using RT-PCR, immunochemical, and Western blot methods. The effects of Cl, transport inhibitors on H+ and Cl, extrusion were assessed by measuring intracellular H+ ([H+]i) and Cl, ([Cl,]i). The effects of inhibitors, antisense oligo-nucleotides, and siRNA for Cl, transporters on bone resorption activities were evaluated using a pit formation assay. Results and Conclusions: Mouse osteoclasts express not only ClC7 but also K+/Cl, co-transporter mRNA. The existence of KCC1 in the cell membrane of mouse osteoclasts was confirmed by immunochemical staining and Western blot analysis. KCC inhibitors and Cl, channels blockers increased [Cl,]i and [H+]i in resorbing osteoclasts, suggesting that the suppression of Cl, extrusion through KCC and Cl, channels leads to reduced H+ extrusion activity. The combination of both inhibitors greatly suppressed these extrusion activities. KCC inhibitors and Cl, channel blockers also decreased osteoclastic bone resorption in our pit area essay. Furthermore, KCC1 antisense oligo-nucleotides and siRNA suppressed osteoclastic pit formation as well as treatment of ClC7 inhibitors. These results indicate that K+/Cl, co-transporter-1 expressed in mouse osteoclasts acts as a Cl, extruder and plays an important role for H+ extrusion during bone resorption. [source]


Alteration of RANKL-Induced Osteoclastogenesis in Primary Cultured Osteoclasts From SERCA2+/, Mice,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2009
Yu-Mi Yang
Abstract RANKL is essential for the terminal differentiation of monocytes/marcrophages into osteoclasts. RANKL induces long-lasting oscillations in the intracellular concentration of Ca2+ ([Ca2+]i) only after 24 h of stimulation. These Ca2+ oscillations play a switch-on role in NFATc1 expression and osteoclast differentiation. Which Ca2+ transporting pathway is induced by RANKL to evoke the Ca2+ oscillations and its specific role in RANKL-mediated osteoclast differentiation is not known. This study examined the effect of a partial loss of sarco/endoplasmic reticulum Ca2+ ATPase type2 (SERCA2) on osteoclast differentiation in SERCA2 heterozygote mice (SERCA2+/,). The BMD in the tibias of SERCA2+/, mice increased >1.5-fold compared with wildtype mice (WT). RANKL-induced [Ca2+]i oscillations were generated 48 h after RANKL treatment in the WT mice but not in the SERCA2+/, bone marrow,derived macrophages (BMMs). Forty-eight hours after RANKL treatment, there was a lower level of NFATc1 protein expression and markedly reduced translocation of NFATc1 into the nucleus during osteoclastogenesis of the SERCA2+/, BMMs. In addition, RANKL treatment of SERCA2+/, BMMs incompletely induced formation of multinucleated cells, leading to reduced bone resorption activity. These results suggest that RANKL-mediated induction of SERCA2 plays a critical role in the RANKL-induced [Ca2+]i oscillations that are essential for osteoclastogenesis. [source]


Bone resorbing activity and cytokine levels in gingival crevicular fluid before and after treatment of periodontal disease

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 6 2004
Anders Holmlund
Abstract Background: The aim of the present study was to investigate bone resorption activity (BRA), interleukin-1, (IL-1,), IL-1, and interleukin-1 receptor antagonist (IL-1ra) in gingival crevicular fluid (GCF) in sites with no signs of periodontol disease and in sites with horizontal or angular loss of periodontal bone. These assessments were performed before and after periodontal treatment. Methods: GCFs were collected from 10 individuals with filter strips from two healthy sites and four sites with deep pathological periodontal pockets, two of which showed horizontal bone loss and two with angular bone loss. All diseased pockets were treated with flap surgery and systemic Doxyferm®. Twelve months later GCF was collected again and treatment outcome evaluated. BRA in GCFs was assessed in a bone organ culture system by following the release of 45Ca from neonatal mouse calvariae. The amounts of IL-1,, IL-1, and IL-1ra in GCFs were quantified by enzyme-linked immunosorbent assay (ELISA). Results: Treatment resulted in reduction of pocket depths with 3.5±0.5 mm in sites with angular bone loss and 2.8±0.3 mm in sites with horizontal bone loss. Initially, BRA, IL-1,, IL-1, and IL-1ra were significantly higher in GCFs from diseased sites compared with healthy sites. No differences in BRA and cytokine levels were seen between GCFs from pockets with horizontal and angular bone losses. The levels of IL-1,, IL-1, and IL-1ra were significantly reduced after treatment of diseased pockets. Pocket depths were significantly correlated to BRA only in pre-treatment sites with angular bone loss. BRA was correlated to Il-1,, IL-1,, but not to IL-1ra, in diseased sites with angular bone loss, before and after treatment. The reductions of BRA in the individual sites, seen after treatment, were not correlated to the reductions of Il-1,, IL-1, or IL-1ra. Conclusions: These data show that BRA and cytokine levels are increased in GCFs from sites with periodontal disease and that periodontal treatment results in reduction of the cytokines. Our findings further indicate that IL-1, and IL-1, play important roles for the BRA present in GCFs, but that other factors also contribute to this activity. [source]


Bone resorption activity of osteolytic metastatic lung and breast cancers

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2004
Lih-Yuann Shih
Abstract Production of bone resorption mediators and bone resorption activity were compared among osteolytic metastatic cancers, normal bone tissues, and soft tissue metastatic cancers to search for the possible factors leading to cancer-induced bone resorption. Twenty-five patients with untreated osteolytic metastatic breast or non-small cell lung cancers consisted of the study group. Normal bone tissues obtained from the same patient were used as internal controls; and tumor tissues from patients with soft tissue metastasis were used as external controls. Serum and urinary bone turnover markers were measured. Tissues harvested during surgery were subjected to tissue culture. The levels of prostaglandin E2 (PGE2), tumor necrosis factor-, (TNF-,), and interleukin-6 (IL-6) in the supernatant after 72 h of culture were measured. Bone resorption activity was measured by calcium release from cultured calvarias, and bone volume as well as osteoclast number in bone sections. Patients with osteolytic metastatic cancers showed significantly decreased serum osteocalcin, increased serum alkaline phosphatase, and urinary deoxypyridinoline levels. Osteolytic metastatic cancers produced significantly more PGE2 than both controls. Conditioned medium from osteolytic metastatic tumors showed significantly enhanced bone resorption activity, and indomethacin significantly reduced this activity. Levels of PGE2, and bone resorption activity increased in osteolytic tumor tissues than soft tissue metastatic tissues in the same patient indicated that the same tumor cells might respond differently to different microenvironments. Our observation showed that PGE2 was produced by osteolytic metastatic cancers and stimulated bone resorption in mice calvarias. PGE2 inhibitor may be applicable in reducing bone resorption by osteolytic metastatic cancers. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Quantitative evaluation of bone resorption activity of osteoclast-like cells by measuring calcium phosphate resorbing area using incubator-facilitated and video-enhanced microscopy

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2009
Yoshitaka Morimoto
Abstract Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro. Microsc. Res. Tech, 2009. © 2008 Wiley-Liss, Inc. [source]