Bone Induction (bone + induction)

Distribution by Scientific Domains


Selected Abstracts


Immunosuppression with FK506 Increases Bone Induction in Demineralized Isogeneic and Xenogeneic Bone Matrix in the Rat

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2000
Dr. Gregor Voggenreiter
Abstract The aim of the present study was to investigate a systemic induction of bone formation in rats by immunosuppression with FK506 (1 mg/kg body weight intraperitoneally [ip]) in a model of osteoinduction of isogeneic and xenogeneic demineralized bone matrix (DBM) for a period of 28 days. In particular, alterations of in vitro cytokine synthesis and changes of lymphocyte subsets were studied. DBM was implanted intramuscularly in the abdominal wall of Lewis rats (seven per group). Blood was sampled on days ,7, 0, 7, and 28 for determination of in vitro tumor necrosis factor , (TNF-,) synthesis and lymphocyte subsets by flow cytometry (CD3+, CD4+, CD8+, CD45+, ED9+, and Ia+ antibodies). Ossicles of de novo formed bone and the tibias were removed on day 28 after double tetracycline labeling for histomorphometric analysis. Immunosuppression with FK506 significantly decreased lipopolysaccharide (LPS)-stimulated in vitro cytokine synthesis after 7 days and 28 days (p < 0.05). Compared with control animals FK506 treatment significantly increased the volume of induced bone in isogeneic (2.1 ± 0.3 mm3 vs. 10.8 ± 0.9 mm3) and xenogeneic (0 mm3 vs. 4.7 ± 0.8 mm3) DBM. Bone histomorphometry of the tibias revealed that immunosuppression increased both bone formation and bone resorption, accompanied by a significant reduction in the relative trabecular area (Tb.Ar). FK506 caused a decrease in the counts of CD8+ T cells probably because of destruction or dislocation of these cells. This suggests that the amount of CD8+ cells and the degree of T cell activation in terms of mean fluorescence intensity (MFI) may be associated with bone metabolism. In support of this, statistical analysis revealed a significant positive correlation between parameters of bone formation as well as bone resorption and the CD4+/CD8+ ratio. There was a significant negative correlation between parameters of remodeling of the metaphysis of the tibia and induced bone volume (BV), respectively, and MFI values of CD3+/Ia+ cells. These findings suggest an important role of T lymphocytes in bone formation and bone resorption in vivo. FK506 caused a marked increase of bone formation in DBM. However, the conclusion that immunosuppression increases fracture healing warrants further investigation. [source]


Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2004
U. Ripamonti
Abstract Bone morphogenetic and osteogenic proteins (BMPs/OPs), members of the transforming growth factor-, (TGF-,) superfamily, are soluble mediators of tissue morphogenesis and induce de novo endochondral bone formation in heterotopic extraskeletal sites as a recapitulation of embryonic development. In the primate Papio ursinus, the induction of bone formation has been extended to the TGF-, isoforms per se. In the primate and in the primate only, the TGF-, isoforms are initiators of endochondral bone formation by induction and act in a species-, site- and tissue-specific mode with robust endochondral bone induction in heterotopic sites but with limited new bone formation in orthotopic bone defects. The limited inductive capacity orthotopically of TGF-, isoforms is associated with expression of the inhibitory Smads, Smad6 and Smad7. In primates, bone formation can also be induced using biomimetic crystalline hydroxyapatite matrices with a specific surface geometry and without the exogenous application of osteogenic proteins of the TGF-, superfamily, even when the biomimetic matrices are implanted heterotopically in the rectus abdominis muscle. The sequence of events that directs new bone formation upon the implantation of highly crystalline biomimetic matrices initiates with vascular invasion, mesenchymal cell migration, attachment and differentiation of osteoblast-like cells attached to the substratum, expression and synthesis of osteogenic proteins of the TGF-, superfamily resulting in the induction of bone as a secondary response. The above findings in the primate indicate enormous potential for the bioengineering industry. Of particular interest is that biomimetic matrices with intrinsic osteoinductivity would be an affordable option in the local context. [source]


Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery

BIOTECHNOLOGY PROGRESS, Issue 4 2008
Sufeng Zhang
Abstract Nanoparticle (NP)-based delivery has gained importance for improving the potency of therapeutic agents. The bovine serum albumin (BSA) NPs, obtained by a coacervation process, was modified by electrostatic adsorption of cationic polyethylenimine (PEI) to NP surfaces for delivery of bone-inducing growth factor, bone morphogenetic protein-2 (BMP-2). Different concentrations of PEI were utilized for coating BSA NPs to stabilize the colloidal system and to control the release of BMP-2. The NPs were characterized by size and zeta potential measurements, as well as by Scanning Electron Microscopy and Atomic Force Microscopy. The encapsulation efficiency was typically >90% in all NP preparations. In vitro release kinetics showed that the PEI concentration used for coating the NPs efficiently controlled the release of BMP-2, demonstrating a gradual slowing, sustained release pattern during a 10-day study period. The bioactivity of the encapsulated BMP-2 and the toxicity of the NPs were examined by the alkaline phosphatase (ALP) induction assay and the MTT assay, respectively, using C2C12 cells. The results indicated that PEI was the primary determinant of NP toxicities, and BSA NPs coated with 0.1 mg/mL PEI demonstrated tolerable toxicity, retained the bioactivity of BMP-2, and efficiently slowed the release rate of BMP-2. We conclude that BMP-2 encapsulated in BSA NPs might be an efficient way to deliver the protein for in vivo bone induction. [source]


rhBMP-2/,BSM® Induces Significant Vertical Alveolar Ridge Augmentation and Dental Implant Osseointegration

CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 4 2002
Ulf M.E. Wikesjö DDS
ABSTRACT Background: Recombinant human bone morphogenetic protein 2 (rhBMP-2) in a carrier has been shown to induce significant bone formation. Several candidate carriers, however, lack structural integrity to offset compressive forces that may compromise rhBMP-2 bone induction, in particular, for challenging onlay indications such as alveolar ridge augmentation. Purpose: The objective of this study was to evaluate rhBMP-2 in a calcium-phosphate cement carrier, ,BSM, for vertical alveolar ridge augmentation and immediate dental implant Osseointegration. Materials and Methods: Six adult Hound Labrador mongrels with 5 mm critical size supra-alveolar peri-implant defects were used. Three animals received rhBMP-2/,BSM (rhBMP-2 at 0.40 and 0.75 mg/mL) in contralateral jaw quadrants (total implant volume/defect , 1.5 mL). Three animals received ,BSM without rhBMP-2 (control group). The animals were euthanized at 16 weeks post surgery, and block biopsies were processed for histologie and histometric analysis. Results: rhBMP-2/,BSM induced substantial augmentation of the alveolar ridge. Control sites exhibited limited new bone formation. Vertical bone augmentation averaged (SD) 4.9 ± 1.0 mm (rhBMP-2 at 0.40 mg/mL), 5.3 ± 0.3 mm (rhBMP-2 at 0.75 mg/mL), and 0.4 ± 0.4 mm (control); new bone area 8.5 ± 4.2 mm 2, 9.0 ± 1.9 mm 2, and 0.5 ± 0.4 mm 2; new bone density 55.1 ± 6.4%, 61.1 ± 6.0%, and 67.7 ± 9.5%; and new bone-implant contact 26.9 ± 17.5%, 28.5 ± 1.4%, and 24.6 ± 16.1%, respectively. Residual ,BSM comprised 1% of the new bone. Bone density for the contiguous resident bone ranged from 65 to 71%, and bone-implant contact ranged from 49 to 64%. Conclusions: Surgical implantation of rhBMP-2/,BSM appears an effective protocol for vertical alveolar ridge augmentation procedures and immediate dental implant Osseointegration and for onlay indications of lesser complexity. [source]